File size: 15,774 Bytes
60a19b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddf4f2
 
60a19b7
4ddf4f2
 
4cfe99e
60a19b7
4ddf4f2
 
1378b3b
4ddf4f2
1378b3b
 
65a487f
4cfe99e
1378b3b
4ddf4f2
 
 
00607ed
60a19b7
 
65a487f
 
 
60a19b7
bc69486
65a487f
60a19b7
bc69486
65a487f
4ddf4f2
 
1378b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3c81f6
1378b3b
4dd02a3
1378b3b
 
60a19b7
c2dfc52
4cfe99e
c2dfc52
 
 
 
 
 
60a19b7
4cfe99e
c2dfc52
4ddf4f2
 
 
 
 
 
60a19b7
4ddf4f2
 
 
 
 
 
60a19b7
4ddf4f2
 
 
 
 
 
 
 
 
 
60a19b7
65a487f
 
 
 
 
 
60a19b7
65a487f
 
 
 
 
 
60a19b7
65a487f
 
4ddf4f2
 
 
 
4cfe99e
 
 
 
 
 
 
 
 
4ddf4f2
 
 
 
 
 
 
 
4cfe99e
4ddf4f2
 
60a19b7
 
 
 
4ddf4f2
60a19b7
4ddf4f2
 
60a19b7
1378b3b
 
 
60a19b7
1378b3b
 
db6fcb0
60a19b7
c3c81f6
db6fcb0
 
 
 
 
 
60a19b7
db6fcb0
23174f3
db6fcb0
60a19b7
00607ed
db6fcb0
ca7d12d
60a19b7
ca7d12d
 
db6fcb0
23174f3
60a19b7
1378b3b
 
 
6b938ab
60a19b7
65a487f
60a19b7
 
 
 
 
 
65a487f
60a19b7
1378b3b
60a19b7
1378b3b
 
 
 
 
77832fe
4ddf4f2
 
 
 
 
 
 
 
 
 
 
 
 
60a19b7
1378b3b
 
60a19b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# import os
# import time
# from fastapi import FastAPI,Request
# from fastapi.responses import HTMLResponse
# from fastapi.staticfiles import StaticFiles
# from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# from pydantic import BaseModel
# from fastapi.responses import JSONResponse
# import uuid  # for generating unique IDs
# import datetime
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.templating import Jinja2Templates
# from huggingface_hub import InferenceClient
# import json
# import re
# from gradio_client import Client
# from simple_salesforce import Salesforce, SalesforceLogin
# from llama_index.llms.huggingface import HuggingFaceLLM


# # Define Pydantic model for incoming request body
# class MessageRequest(BaseModel):
#     message: str
# # repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
# # llm_client = InferenceClient(
# #     model=repo_id,
# #     token=os.getenv("HF_TOKEN"),
# # )


# os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
# username = os.getenv("username")
# password = os.getenv("password")
# security_token = os.getenv("security_token")
# domain =  os.getenv("domain")# Using sandbox environment
# session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)

#     # Create Salesforce object
# sf = Salesforce(instance=sf_instance, session_id=session_id)

# app = FastAPI()


# @app.middleware("http")
# async def add_security_headers(request: Request, call_next):
#     response = await call_next(request)
#     response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
#     response.headers["X-Frame-Options"] = "ALLOWALL"
#     return response


# # Allow CORS requests from any domain
# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=["*"],
#     allow_credentials=True,
#     allow_methods=["*"],
#     allow_headers=["*"],
# )




# @app.get("/favicon.ico")
# async def favicon():
#     return HTMLResponse("")  # or serve a real favicon if you have one


# app.mount("/static", StaticFiles(directory="static"), name="static")

# templates = Jinja2Templates(directory="static")
# # Configure Llama index settings
# # Settings.llm = HuggingFaceInferenceAPI(
# #     model_name="meta-llama/Meta-Llama-3-8B-Instruct",
# #     tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
# #     context_window=3000,
# #     token=os.getenv("HF_TOKEN"),
# #     max_new_tokens=512,
# #     generate_kwargs={"temperature": 0.1},
# # )
# # Configure Llama index settings
# Settings.llm = HuggingFaceLLM(
#     model_name="google/flan-t5-small",
#     tokenizer_name="google/flan-t5-small",
#     context_window=512,  # flan-t5-small has a max context window of 512 tokens
#     max_new_tokens=256,
#     generate_kwargs={"temperature": 0.1, "do_sample": True},
#     device_map="auto"  # Automatically use GPU if available, else CPU
# )
# Settings.embed_model = HuggingFaceEmbedding(
#     model_name="BAAI/bge-small-en-v1.5"
# )

# PERSIST_DIR = "db"
# PDF_DIRECTORY = 'data'

# # Ensure directories exist
# os.makedirs(PDF_DIRECTORY, exist_ok=True)
# os.makedirs(PERSIST_DIR, exist_ok=True)
# chat_history = []
# current_chat_history = []
# def data_ingestion_from_directory():
#     documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
#     storage_context = StorageContext.from_defaults()
#     index = VectorStoreIndex.from_documents(documents)
#     index.storage_context.persist(persist_dir=PERSIST_DIR)

# def initialize():
#     start_time = time.time()
#     data_ingestion_from_directory()  # Process PDF ingestion at startup
#     print(f"Data ingestion time: {time.time() - start_time} seconds")
# def split_name(full_name):
#     # Split the name by spaces
#     words = full_name.strip().split()
    
#     # Logic for determining first name and last name
#     if len(words) == 1:
#         first_name = ''
#         last_name = words[0]
#     elif len(words) == 2:
#         first_name = words[0]
#         last_name = words[1]
#     else:
#         first_name = words[0]
#         last_name = ' '.join(words[1:])
    
#     return first_name, last_name

# initialize()  # Run initialization tasks


# def handle_query(query):
#     chat_text_qa_msgs = [
#         (
#             "user",
#             """
#             You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only       
#             {context_str}
#             Question:
#             {query_str}
#             """
#         )
#     ]
#     text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
#     storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
#     index = load_index_from_storage(storage_context)
#     context_str = ""
#     for past_query, response in reversed(current_chat_history):
#         if past_query.strip():
#             context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    
#     query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
#     answer = query_engine.query(query)

#     if hasattr(answer, 'response'):
#         response=answer.response
#     elif isinstance(answer, dict) and 'response' in answer:
#         response =answer['response']
#     else:
#         response ="Sorry, I couldn't find an answer."
#     current_chat_history.append((query, response))
#     return response
# @app.get("/ch/{id}", response_class=HTMLResponse)
# async def load_chat(request: Request, id: str):
#     return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
# # Route to save chat history
# @app.post("/hist/")
# async def save_chat_history(history: dict):
#     # Check if 'userId' is present in the incoming dictionary
#     user_id = history.get('userId')
#     print(user_id)

#     # Ensure user_id is defined before proceeding
#     if user_id is None:
#         return {"error": "userId is required"}, 400

#     # Construct the chat history string
#     hist = ''.join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history['history']])
#     hist = "You are a Redfernstech summarize model. Your aim is to use this conversation to identify user interests solely based on that conversation: " + hist
#     print(hist)

#     # Get the summarized result from the client model
#     result = hist

#     try:
#         sf.Lead.update(user_id, {'Description': result})
#     except Exception as e:
#         return {"error": f"Failed to update lead: {str(e)}"}, 500
    
#     return {"summary": result, "message": "Chat history saved"}
# @app.post("/webhook")
# async def receive_form_data(request: Request):
#     form_data = await request.json()
#     # Log in to Salesforce
#     first_name, last_name = split_name(form_data['name'])
#     data = {
#     'FirstName': first_name,
#     'LastName': last_name,
#     'Description': 'hii',  # Static description
#     'Company': form_data['company'],  # Assuming company is available in form_data
#     'Phone': form_data['phone'].strip(),  # Phone from form data
#     'Email': form_data['email'],  # Email from form data
#     }
#     a=sf.Lead.create(data)
#     # Generate a unique ID (for tracking user)
#     unique_id = a['id']
    
#     # Here you can do something with form_data like saving it to a database
#     print("Received form data:", form_data)
    
#     # Send back the unique id to the frontend
#     return JSONResponse({"id": unique_id})

# @app.post("/chat/")
# async def chat(request: MessageRequest):
#     message = request.message  # Access the message from the request body
#     response = handle_query(message)  # Process the message
#     message_data = {
#         "sender": "User",
#         "message": message,
#         "response": response,
#         "timestamp": datetime.datetime.now().isoformat()
#     }
#     chat_history.append(message_data)
#     return {"response": response}
# @app.get("/")
# def read_root():
#     return {"message": "Welcome to the API"}

import os
import time
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, PromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import datetime
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from simple_salesforce import Salesforce, SalesforceLogin
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# Define Pydantic model for incoming request body
class MessageRequest(BaseModel):
    message: str

# Environment variables for Salesforce
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")  # Optional: Needed for model download if gated
username = os.getenv("username")
password = os.getenv("password")
security_token = os.getenv("security_token")
domain = os.getenv("domain")  # Using sandbox environment
session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)

# Create Salesforce object
sf = Salesforce(instance=sf_instance, session_id=session_id)

app = FastAPI()

@app.middleware("http")
async def add_security_headers(request: Request, call_next):
    response = await call_next(request)
    response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
    response.headers["X-Frame-Options"] = "ALLOWALL"
    return response

# Allow CORS requests from any domain
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/favicon.ico")
async def favicon():
    return HTMLResponse("")  # or serve a real favicon if you have one

app.mount("/static", StaticFiles(directory="static"), name="static")

templates = Jinja2Templates(directory="static")

# Configure Llama index settings
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
Settings.llm = HuggingFaceLLM(
    model_name="google/flan-t5-small",
    tokenizer_name="google/flan-t5-small",
    context_window=512,  # flan-t5-small has a max context window of 512 tokens
    max_new_tokens=256,
    generate_kwargs={"temperature": 0.1, "do_sample": True},
    model=AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small"),
    tokenizer=tokenizer,
    device_map="auto"  # Automatically use GPU if available, else CPU
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

PERSIST_DIR = "db"
PDF_DIRECTORY = "data"

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []

def data_ingestion_from_directory():
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def initialize():
    start_time = time.time()
    data_ingestion_from_directory()  # Process PDF ingestion at startup
    print(f"Data ingestion time: {time.time() - start_time} seconds")

def split_name(full_name):
    # Split the name by spaces
    words = full_name.strip().split()
    
    # Logic for determining first name and last name
    if len(words) == 1:
        first_name = ""
        last_name = words[0]
    elif len(words) == 2:
        first_name = words[0]
        last_name = words[1]
    else:
        first_name = words[0]
        last_name = " ".join(words[1:])
    
    return first_name, last_name

initialize()  # Run initialization tasks

def handle_query(query):
    # Custom prompt template for flan-t5-small (no chat template)
    text_qa_template = PromptTemplate(
        """
        You are Clara, a Redfernstech chatbot. Provide accurate, concise answers (10-15 words) based on company data.
        Context: {context_str}
        Question: {query_str}
        Answer:
        """
    )
    
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
    
    query_engine = index.as_query_engine(text_qa_template=text_qa_template)
    answer = query_engine.query(query)

    if hasattr(answer, "response"):
        response = answer.response
    elif isinstance(answer, dict) and "response" in answer:
        response = answer["response"]
    else:
        response = "Sorry, I couldn't find an answer."
    current_chat_history.append((query, response))
    return response

@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
    return templates.TemplateResponse("index.html", {"request": request, "user_id": id})

@app.post("/hist/")
async def save_chat_history(history: dict):
    # Check if 'userId' is present in the incoming dictionary
    user_id = history.get("userId")
    print(user_id)

    # Ensure user_id is defined before proceeding
    if user_id is None:
        return {"error": "userId is required"}, 400

    # Construct the chat history string
    hist = "".join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history["history"]])
    hist = "You are a Redfernstech summarize model. Your aim is to use this conversation to identify user interests solely based on that conversation: " + hist
    print(hist)

    # Get the summarized result
    result = hist

    try:
        sf.Lead.update(user_id, {"Description": result})
    except Exception as e:
        return {"error": f"Failed to update lead: {str(e)}"}, 500
    
    return {"summary": result, "message": "Chat history saved"}

@app.post("/webhook")
async def receive_form_data(request: Request):
    form_data = await request.json()
    # Log in to Salesforce
    first_name, last_name = split_name(form_data["name"])
    data = {
        "FirstName": first_name,
        "LastName": last_name,
        "Description": "hii",  # Static description
        "Company": form_data["company"],  # Assuming company is available in form_data
        "Phone": form_data["phone"].strip(),  # Phone from form data
        "Email": form_data["email"],  # Email from form data
    }
    a = sf.Lead.create(data)
    # Generate a unique ID (for tracking user)
    unique_id = a["id"]
    
    # Here you can do something with form_data like saving it to a database
    print("Received form data:", form_data)
    
    # Send back the unique id to the frontend
    return JSONResponse({"id": unique_id})

@app.post("/chat/")
async def chat(request: MessageRequest):
    message = request.message  # Access the message from the request body
    response = handle_query(message)  # Process the message
    message_data = {
        "sender": "User",
        "message": message,
        "response": response,
        "timestamp": datetime.datetime.now().isoformat()
    }
    chat_history.append(message_data)
    return {"response": response}

@app.get("/")
def read_root():
    return {"message": "Welcome to the API"}