File size: 28,914 Bytes
2acde75 8e4d957 a94357a 2acde75 bba2e95 4e1b760 8e4d957 d3f5a3e 8e4d957 bba2e95 8e4d957 94517a5 8e4d957 578f6c4 8e4d957 578f6c4 8e4d957 d3f5a3e 94517a5 d3f5a3e 94517a5 d3f5a3e 94517a5 d3f5a3e 94517a5 d3f5a3e 94517a5 e14c37a 94517a5 e14c37a 94517a5 e14c37a 94517a5 e14c37a 94517a5 e14c37a 94517a5 e14c37a 94517a5 e14c37a 94517a5 e14c37a 94517a5 e14c37a 94517a5 e14c37a 8f516cc e14c37a 94517a5 d3f5a3e e14c37a 94517a5 e14c37a 94517a5 abd0699 d3f5a3e 2acde75 8e4d957 d3f5a3e 2acde75 d3f5a3e 2acde75 d3f5a3e 7ba9b3a d3f5a3e 7ba9b3a d3f5a3e 8e4d957 d76c9ff 8e4d957 d772244 8e4d957 2acde75 8e4d957 25d0fe8 8e4d957 25d0fe8 8e4d957 25d0fe8 8e4d957 697d223 2acde75 8e4d957 d3f5a3e 8e4d957 d3f5a3e 8e4d957 d3f5a3e 8e4d957 d3f5a3e 8e4d957 d3f5a3e 8e4d957 e14c37a 8e4d957 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
import os
import gradio as gr
import requests
import json
import cv2
import numpy as np
import time
from PIL import Image
from fr.engine.header import *
from fl.engine.header import *
import fr.engine.header as fr_header
import fl.engine.header as fl_header
css = """
.example-image img{
display: flex; /* Use flexbox to align items */
justify-content: center; /* Center the image horizontally */
align-items: center; /* Center the image vertically */
height: 300px; /* Set the height of the container */
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
}
.example-image{
display: flex; /* Use flexbox to align items */
justify-content: center; /* Center the image horizontally */
align-items: center; /* Center the image vertically */
height: 350px; /* Set the height of the container */
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
}
.face-row {
display: flex;
justify-content: space-around; /* Distribute space evenly between elements */
align-items: center; /* Align items vertically */
width: 100%; /* Set the width of the row to 100% */
}
.face-image{
justify-content: center; /* Center the image horizontally */
align-items: center; /* Center the image vertically */
height: 160px; /* Set the height of the container */
width: 160px;
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
}
.face-image img{
justify-content: center; /* Center the image horizontally */
align-items: center; /* Center the image vertically */
height: 160px; /* Set the height of the container */
object-fit: contain; /* Preserve aspect ratio while fitting the image within the container */
}
.markdown-success-container {
background-color: #F6FFED;
padding: 20px;
margin: 20px;
border-radius: 1px;
border: 2px solid green;
text-align: center;
}
.markdown-fail-container {
background-color: #FFF1F0;
padding: 20px;
margin: 20px;
border-radius: 1px;
border: 2px solid red;
text-align: center;
}
.markdown-attribute-container {
display: flex;
justify-content: space-around; /* Distribute space evenly between elements */
align-items: center; /* Align items vertically */
padding: 10px;
margin: 10px;
}
.block-background {
# background-color: #202020; /* Set your desired background color */
border-radius: 5px;
}
"""
file_path = os.path.abspath(__file__)
root_path = os.path.dirname(file_path)
g_fr_activation_result = -1
g_fl_activation_result = -1
MATCH_THRESHOLD = 0.67
SPOOF_THRESHOLD = 0.5
def activate_fr_sdk():
fr_key = os.environ.get("FR_LICENSE_KEY")
fr_dict_path = os.path.join(root_path, "fr/engine/bin")
ret = -1
if fr_key is None:
print_warning("Recognition online license key not found!")
else:
ret = fr_header.init_sdk(fr_dict_path.encode('utf-8'), fr_key.encode('utf-8'))
if ret == 0:
print_log("Successfully init FR SDK!")
else:
print_error(f"Falied to init FR SDK, Error code {ret}")
return ret
def activate_fl_sdk():
fl_key = os.environ.get("FL_LICENSE_KEY")
fl_dict_path = os.path.join(root_path, "fl/engine/bin")
ret = -1
if fl_key is None:
print_warning("Liveness Detection online license key not found!")
else:
ret = fl_header.init_sdk(fl_dict_path.encode('utf-8'), fl_key.encode('utf-8'))
if ret == 0:
print_log("Successfully init FL SDK!")
else:
print_error(f"Falied to init FL SDK, Error code {ret}")
return ret
def convert_fun(input_str):
# Remove line breaks and extra whitespaces
return ' '.join(input_str.split())
# def get_attributes(frame):
# url = "https://recognito.p.rapidapi.com/api/analyze_face"
# try:
# files = {'image': open(frame, 'rb')}
# headers = {"X-RapidAPI-Key": os.environ.get("API_KEY")}
# r = requests.post(url=url, files=files, headers=headers)
# except:
# raise gr.Error("Please select images file!")
# faces = None
# face_crop, one_line_attribute = None, ""
# try:
# image = Image.open(frame)
# face = Image.new('RGBA',(150, 150), (80,80,80,0))
# res = r.json().get('image')
# if res is not None and res:
# face = res.get('detection')
# x1 = face.get('x')
# y1 = face.get('y')
# x2 = x1 + face.get('w')
# y2 = y1 + face.get('h')
# if x1 < 0:
# x1 = 0
# if y1 < 0:
# y1 = 0
# if x2 >= image.width:
# x2 = image.width - 1
# if y2 >= image.height:
# y2 = image.height - 1
# face_crop = image.crop((x1, y1, x2, y2))
# face_image_ratio = face_crop.width / float(face_crop.height)
# resized_w = int(face_image_ratio * 150)
# resized_h = 150
# face_crop = face_crop.resize((int(resized_w), int(resized_h)))
# attr = res.get('attribute')
# age = attr.get('age')
# gender = attr.get('gender')
# emotion = attr.get('emotion')
# ethnicity = attr.get('ethnicity')
# mask = attr.get('face_mask')
# glass = 'No Glasses'
# if attr.get('glasses') == 'USUAL':
# glass = 'Glasses'
# if attr.get('glasses') == 'DARK':
# glass = 'Sunglasses'
# open_eye_thr = 0.3
# left_eye = 'Close'
# if attr.get('eye_left') >= open_eye_thr:
# left_eye = 'Open'
# right_eye = 'Close'
# if attr.get('eye_right') >= open_eye_thr:
# right_eye = 'Open'
# facehair = attr.get('facial_hair')
# haircolor = attr.get('hair_color')
# hairtype = attr.get('hair_type')
# headwear = attr.get('headwear')
# pitch = attr.get('pitch')
# roll = attr.get('roll')
# yaw = attr.get('yaw')
# quality = attr.get('quality')
# attribute = f"""
# <br/>
# <div class="markdown-attribute-container">
# <table>
# <tr>
# <th style="text-align: center;">Attribute</th>
# <th style="text-align: center;">Result</th>
# <th style="text-align: center;">Score</th>
# <th style="text-align: center;">Threshold</th>
# </tr>
# <tr>
# <td>Gender</td>
# <td>{gender}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>Age</td>
# <td>{int(age)}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>Pitch</td>
# <td>{"{:.4f}".format(pitch)}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>Yaw</td>
# <td>{"{:.4f}".format(yaw)}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>Roll</td>
# <td>{"{:.4f}".format(roll)}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>Emotion</td>
# <td>{emotion}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>Left Eye</td>
# <td>{left_eye}</td>
# <td>{"{:.4f}".format(attr.get('eye_left'))}</td>
# <td>{open_eye_thr}</td>
# </tr>
# <tr>
# <td>Right Eye</td>
# <td>{right_eye}</td>
# <td>{"{:.4f}".format(attr.get('eye_right'))}</td>
# <td>{open_eye_thr}</td>
# </tr>
# <tr>
# <td>Mask</td>
# <td>{mask}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>Glass</td>
# <td>{glass}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>FaceHair</td>
# <td>{facehair}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>HairColor</td>
# <td>{haircolor}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>HairType</td>
# <td>{hairtype}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>HeadWear</td>
# <td>{headwear}</td>
# <td></td><td></td>
# </tr>
# <tr>
# <td>Image Quality</td>
# <td>{"{:.4f}".format(quality)}</td>
# <td></td><td></td>
# </tr>
# </table>
# </div>
# """
# one_line_attribute = convert_fun(attribute)
# except:
# pass
# return face_crop, one_line_attribute
def check_liveness(frame):
# url = "https://recognito-faceliveness.p.rapidapi.com/api/check_liveness"
# try:
# files = {'image': open(frame, 'rb')}
# headers = {"X-RapidAPI-Key": os.environ.get("API_KEY")}
# r = requests.post(url=url, files=files, headers=headers)
# except:
# raise gr.Error("Please select images file!")
# faces = None
# face_crop, liveness_result, liveness_score = None, "", -200
# try:
# image = Image.open(frame)
# face = Image.new('RGBA',(150, 150), (80,80,80,0))
# res = r.json().get('data')
# if res is not None and res:
# face = res.get('face_rect')
# x1 = face.get('x')
# y1 = face.get('y')
# x2 = x1 + face.get('w')
# y2 = y1 + face.get('h')
# if x1 < 0:
# x1 = 0
# if y1 < 0:
# y1 = 0
# if x2 >= image.width:
# x2 = image.width - 1
# if y2 >= image.height:
# y2 = image.height - 1
# face_crop = image.crop((x1, y1, x2, y2))
# face_image_ratio = face_crop.width / float(face_crop.height)
# resized_w = int(face_image_ratio * 150)
# resized_h = 150
# face_crop = face_crop.resize((int(resized_w), int(resized_h)))
# liveness_score = res.get('liveness_score')
# liveness = res.get('result')
# if liveness == 'REAL':
# liveness_result = f"""<br/><div class="markdown-success-container"><p style="text-align: center; font-size: 20px; color: green;">Liveness Check: REAL<br/>Score: {liveness_score}</p></div>"""
# else:
# liveness_result = f"""<br/><div class="markdown-fail-container"><p style="text-align: center; font-size: 20px; color: red;">Liveness Check: {liveness}<br/>Score: {liveness_score}</p></div>"""
# except:
# pass
# return face_crop, liveness_result, liveness_score
global g_fl_activation_result
if g_fl_activation_result != 0:
gr.Warning("FL SDK Activation Failed!")
return None, None, None
try:
image = open(frame, 'rb')
except:
raise gr.Error("Please select image file!")
image_mat = cv2.imdecode(np.frombuffer(image.read(), np.uint8), cv2.IMREAD_COLOR)
start_time = time.time()
result, face_rect, score, angles = fl_header.check_liveness(image_mat, SPOOF_THRESHOLD)
end_time = time.time()
process_time = (end_time - start_time) * 1000
face_crop, one_line_attribute = None, ""
try:
image = Image.open(frame)
face = Image.new('RGBA',(150, 150), (80,80,80,0))
if face_rect is not None:
x1 = int(face_rect[0])
y1 = int(face_rect[1])
x2 = int(face_rect[2])
y2 = int(face_rect[3])
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image.width:
x2 = image.width - 1
if y2 >= image.height:
y2 = image.height - 1
if (x2 - x1) != 0 and (y2 - y1) != 0:
face_crop = image.crop((x1, y1, x2, y2))
face_image_ratio = face_crop.width / float(face_crop.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_crop = face_crop.resize((int(resized_w), int(resized_h)))
if angles is not None:
yaw = angles[0]
roll = angles[1]
pitch = angles[2]
attribute = f"""
<br/>
<div class="markdown-attribute-container">
<table>
<tr>
<th>Field</th>
<th colspan="2">Value</th>
</tr>
<tr>
<th rowspan="4">Face Rect</th>
<td>x</td>
<td>{x1}</td>
</tr>
<tr>
<td>y</td>
<td>{y1}</td>
</tr>
<tr>
<td>width</td>
<td>{x2 - x1 + 1}</td>
</tr>
<tr>
<td>height</td>
<td>{y2 - y1 + 1}</td>
</tr>
<tr>
<th rowspan="3">Face Angle</th>
<td>Pitch</td>
<td>{"{:.4f}".format(pitch)}</td>
</tr>
<tr>
<td>Yaw</td>
<td>{"{:.4f}".format(yaw)}</td>
</tr>
<tr>
<td>Roll</td>
<td>{"{:.4f}".format(roll)}</td>
</tr>
</table>
</div>
"""
one_line_attribute = convert_fun(attribute)
except:
pass
str_score = str("{:.4f}".format(score))
if result == "REAL":
liveness_result = f"""<br/><div class="markdown-success-container"><p style="text-align: center; font-size: 20px; color: green;">Liveness Check: REAL<br/>Score: {str_score}</p></div>"""
else:
liveness_result = f"""<br/><div class="markdown-fail-container"><p style="text-align: center; font-size: 20px; color: red;">Liveness Check: {result}<br/>Score: {str_score}</p></div>"""
return face_crop, liveness_result, one_line_attribute
def analyze_face(frame):
# face_crop_1, liveness_result, liveness_score = check_liveness(frame)
# face_crop_2, attribute = get_attributes(frame)
# face_crop = face_crop_1 if (face_crop_1 is not None) else face_crop_2
face_crop, liveness_result, attribute = check_liveness(frame)
return [face_crop, liveness_result, attribute]
def compare_face(frame1, frame2):
"""
url = "https://recognito.p.rapidapi.com/api/compare_face"
try:
files = {'image1': open(frame1, 'rb'), 'image2': open(frame2, 'rb')}
headers = {"X-RapidAPI-Key": os.environ.get("API_KEY")}
r = requests.post(url=url, files=files, headers=headers)
except:
raise gr.Error("Please select images files!")
faces = None
try:
image1 = Image.open(frame1)
image2 = Image.open(frame2)
face1 = Image.new('RGBA',(150, 150), (80,80,80,0))
face2 = Image.new('RGBA',(150, 150), (80,80,80,0))
res1 = r.json().get('image1')
if res1 is not None and res1:
face = res1.get('detection')
x1 = face.get('x')
y1 = face.get('y')
x2 = x1 + face.get('w')
y2 = y1 + face.get('h')
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image1.width:
x2 = image1.width - 1
if y2 >= image1.height:
y2 = image1.height - 1
face1 = image1.crop((x1, y1, x2, y2))
face_image_ratio = face1.width / float(face1.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face1 = face1.resize((int(resized_w), int(resized_h)))
res2 = r.json().get('image2')
if res2 is not None and res2:
face = res2.get('detection')
x1 = face.get('x')
y1 = face.get('y')
x2 = x1 + face.get('w')
y2 = y1 + face.get('h')
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image2.width:
x2 = image2.width - 1
if y2 >= image2.height:
y2 = image2.height - 1
face2 = image2.crop((x1, y1, x2, y2))
face_image_ratio = face2.width / float(face2.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face2 = face2.resize((int(resized_w), int(resized_h)))
except:
pass
matching_result = Image.open("icons/blank.png")
similarity_score = ""
if face1 is not None and face2 is not None:
matching_score = r.json().get('matching_score')
if matching_score is not None:
str_score = str("{:.4f}".format(matching_score))
if matching_score >= 0.7:
matching_result = Image.open("icons/same.png")
similarity_score =
else:
matching_result = Image.open("icons/different.png")
similarity_score =
return [face1, face2, matching_result, similarity_score]
"""
global g_fr_activation_result
if g_fr_activation_result != 0:
gr.Warning("FR SDK Activation Failed!")
return None, None, None, None
try:
image1 = open(frame1, 'rb')
image2 = open(frame2, 'rb')
except:
raise gr.Error("Please select images files!")
image_mat1 = cv2.imdecode(np.frombuffer(image1.read(), np.uint8), cv2.IMREAD_COLOR)
image_mat2 = cv2.imdecode(np.frombuffer(image2.read(), np.uint8), cv2.IMREAD_COLOR)
start_time = time.time()
result, score, face_bboxes, face_features = fr_header.compare_face(image_mat1, image_mat2, MATCH_THRESHOLD)
end_time = time.time()
process_time = (end_time - start_time) * 1000
try:
image1 = Image.open(frame1)
image2 = Image.open(frame2)
images = [image1, image2]
face1 = Image.new('RGBA',(150, 150), (80,80,80,0))
face2 = Image.new('RGBA',(150, 150), (80,80,80,0))
faces = [face1, face2]
face_bboxes_result = []
if face_bboxes is not None:
for i, bbox in enumerate(face_bboxes):
x1 = bbox[0]
y1 = bbox[1]
x2 = bbox[2]
y2 = bbox[3]
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= images[i].width:
x2 = images[i].width - 1
if y2 >= images[i].height:
y2 = images[i].height - 1
face_bbox_str = f"x1: {x1}, y1: {y1}, x2: {x2}, y2: {y2}"
face_bboxes_result.append(face_bbox_str)
faces[i] = images[i].crop((x1, y1, x2, y2))
face_image_ratio = faces[i].width / float(faces[i].height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
faces[i] = faces[i].resize((int(resized_w), int(resized_h)))
except:
pass
matching_result = Image.open("icons/blank.png")
similarity_score = ""
if faces[0] is not None and faces[1] is not None:
if score is not None:
str_score = str("{:.4f}".format(score))
if result == "SAME PERSON":
matching_result = Image.open("icons/same.png")
similarity_score = f"""<br/><div class="markdown-success-container"><p style="text-align: center; font-size: 20px; color: green;">Similarity score: {str_score}</p></div>"""
else:
matching_result = Image.open("icons/different.png")
similarity_score = f"""<br/><div class="markdown-fail-container"><p style="text-align: center; font-size: 20px; color: red;">Similarity score: {str_score}</p></div>"""
return faces[0], faces[1], matching_result, similarity_score
def launch_demo(activate_fr_result, activate_fl_result):
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
<a href="https://recognito.vision" style="display: flex; align-items: center;">
<img src="https://recognito.vision/wp-content/uploads/2024/03/Recognito-modified.png" style="width: 8%; margin-right: 15px;"/>
<div>
<p style="font-size: 32px; font-weight: bold; margin: 0;">Recognito</p>
<p style="font-size: 18px; margin: 0;">www.recognito.vision</p>
</div>
</a>
<p style="font-size: 20px; font-weight: bold;">β¨ NIST FRVT Top #1 Face Recognition Algorithm Developer</p>
<div style="display: flex; align-items: center;">
  <a href="https://pages.nist.gov/frvt/html/frvt11.html"> <p style="font-size: 14px;">ππ» Latest NIST FRVT Report</p></a>
</div>
<p style="font-size: 20px; font-weight: bold;">π Product Documentation</p>
<div style="display: flex; align-items: center;">
  <a href="https://docs.recognito.vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/05/book.png" style="width: 48px; margin-right: 5px;"/></a>
</div>
<p style="font-size: 20px; font-weight: bold;">π Visit Recognito</p>
<div style="display: flex; align-items: center;">
  <a href="https://recognito.vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/recognito_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
<a href="https://www.linkedin.com/company/recognito-vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/linkedin_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
<a href="https://huggingface.co/recognito" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/hf_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
<a href="https://github.com/recognito-vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/github_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
<a href="https://hub.docker.com/u/recognito" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/03/docker_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
<a href="https://www.youtube.com/@recognito-vision" style="display: flex; align-items: center;"><img src="https://recognito.vision/wp-content/uploads/2024/04/youtube_64_cl.png" style="width: 32px; margin-right: 5px;"/></a>
</div>
<p style="font-size: 20px; font-weight: bold;">π€ Contact us for our on-premise Face Recognition, Liveness Detection SDKs deployment</p>
<div style="display: flex; align-items: center;">
  <a target="_blank" href="mailto:[email protected]"><img src="https://img.shields.io/badge/[email protected]?logo=gmail " alt="www.recognito.vision"></a>
<a target="_blank" href="https://wa.me/+14158003112"><img src="https://img.shields.io/badge/whatsapp-+14158003112-blue.svg?logo=whatsapp " alt="www.recognito.vision"></a>
<a target="_blank" href="https://t.me/recognito_vision"><img src="https://img.shields.io/badge/telegram-@recognito__vision-blue.svg?logo=telegram " alt="www.recognito.vision"></a>
<a target="_blank" href="https://join.slack.com/t/recognito-workspace/shared_invite/zt-2d4kscqgn-"><img src="https://img.shields.io/badge/slack-recognito__workspace-blue.svg?logo=slack " alt="www.recognito.vision"></a>
</div>
<br/><br/><br/>
"""
)
with gr.Tabs():
with gr.Tab("Face Recognition"):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column(scale=1):
compare_face_input1 = gr.Image(label="Image1", type='filepath', elem_classes="example-image")
gr.Examples(['examples/1.jpg', 'examples/2.jpg', 'examples/3.jpg', 'examples/4.jpg'],
inputs=compare_face_input1)
with gr.Column(scale=1):
compare_face_input2 = gr.Image(label="Image2", type='filepath', elem_classes="example-image")
gr.Examples(['examples/5.jpg', 'examples/6.jpg', 'examples/7.jpg', 'examples/8.jpg'],
inputs=compare_face_input2)
with gr.Blocks():
with gr.Column(scale=1, min_width=400, elem_classes="block-background"):
compare_face_button = gr.Button("Compare Face", variant="primary", size="lg")
with gr.Row(elem_classes="face-row"):
face_output1 = gr.Image(value="icons/face.jpg", label="Face 1", scale=0, elem_classes="face-image", show_share_button=False, show_download_button=False, show_fullscreen_button=False)
compare_result = gr.Image(value="icons/blank.png", min_width=30, scale=0, show_download_button=False, show_label=False, show_share_button=False, show_fullscreen_button=False)
face_output2 = gr.Image(value="icons/face.jpg", label="Face 2", scale=0, elem_classes="face-image", show_share_button=False, show_download_button=False, show_fullscreen_button=False)
similarity_markdown = gr.Markdown("")
compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[face_output1, face_output2, compare_result, similarity_markdown])
with gr.Tab("Face Liveness, Analysis"):
with gr.Row():
with gr.Column(scale=1):
face_input = gr.Image(label="Image", type='filepath', elem_classes="example-image")
gr.Examples(['examples/att_1.jpg', 'examples/att_2.jpg', 'examples/att_3.jpg', 'examples/att_4.jpg', 'examples/att_5.jpg', 'examples/att_6.jpg', 'examples/att_7.jpg'],
inputs=face_input)
with gr.Blocks():
with gr.Column(scale=1, elem_classes="block-background"):
analyze_face_button = gr.Button("Analyze Face", variant="primary", size="lg")
with gr.Row(elem_classes="face-row"):
face_output = gr.Image(value="icons/face.jpg", label="Face", scale=0, elem_classes="face-image", show_share_button=False, show_download_button=False, show_fullscreen_button=False)
liveness_result = gr.Markdown("")
attribute_result = gr.Markdown("")
analyze_face_button.click(analyze_face, inputs=face_input, outputs=[face_output, liveness_result, attribute_result])
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FRecognito%2FFaceRecognition-LivenessDetection-FaceAnalysis"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FRecognito%2FFaceRecognition-LivenessDetection-FaceAnalysis&countColor=%2337d67a&style=flat&labelStyle=upper" /></a>')
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
if __name__ == '__main__':
g_fr_activation_result = activate_fr_sdk()
g_fl_activation_result = activate_fl_sdk()
launch_demo(g_fr_activation_result, g_fl_activation_result) |