Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,7 @@ from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
|
6 |
import numpy as np
|
7 |
import os
|
8 |
|
9 |
-
|
10 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
|
12 |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
|
13 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
|
@@ -33,7 +32,7 @@ def detect_objects_in_frame(image, target):
|
|
33 |
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
34 |
|
35 |
for box, score, label in zip(boxes, scores, labels):
|
36 |
-
if score.item() >= 0.
|
37 |
box = [round(i, 2) for i in box.tolist()]
|
38 |
object_label = text[label]
|
39 |
confidence = round(score.item(), 3)
|
@@ -64,7 +63,7 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
64 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
65 |
out = cv2.VideoWriter(output_path, fourcc, original_fps, (int(cap.get(3)), int(cap.get(4))))
|
66 |
|
67 |
-
batch_size =
|
68 |
frames = []
|
69 |
|
70 |
for frame in progress.tqdm(range(frame_count)):
|
|
|
6 |
import numpy as np
|
7 |
import os
|
8 |
|
9 |
+
device = 'cuda'
|
|
|
10 |
|
11 |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
|
12 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
|
|
|
32 |
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
33 |
|
34 |
for box, score, label in zip(boxes, scores, labels):
|
35 |
+
if score.item() >= 0.5:
|
36 |
box = [round(i, 2) for i in box.tolist()]
|
37 |
object_label = text[label]
|
38 |
confidence = round(score.item(), 3)
|
|
|
63 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
64 |
out = cv2.VideoWriter(output_path, fourcc, original_fps, (int(cap.get(3)), int(cap.get(4))))
|
65 |
|
66 |
+
batch_size = 64
|
67 |
frames = []
|
68 |
|
69 |
for frame in progress.tqdm(range(frame_count)):
|