Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,159 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import faiss
|
4 |
-
import numpy as np
|
5 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain_community.vectorstores import FAISS
|
8 |
-
from langchain.chains import ConversationalRetrievalChain
|
9 |
-
from langchain.memory import ConversationBufferMemory
|
10 |
-
from langchain_core.documents import Document
|
11 |
-
from PyPDF2 import PdfReader
|
12 |
-
from langchain_anthropic import ChatAnthropic
|
13 |
-
|
14 |
-
API_KEY = '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'
|
15 |
-
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620", temperature=0.5, max_tokens=8192, anthropic_api_key=API_KEY)
|
16 |
-
|
17 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
18 |
-
|
19 |
-
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
20 |
-
|
21 |
-
vector_store = None
|
22 |
-
|
23 |
-
|
24 |
-
def process_file(file_path):
|
25 |
-
_, ext = os.path.splitext(file_path)
|
26 |
-
try:
|
27 |
-
if ext.lower() == '.txt':
|
28 |
-
with open(file_path, 'r', encoding='utf-8') as file:
|
29 |
-
text = file.read()
|
30 |
-
elif ext.lower() == '.docx':
|
31 |
-
with open(file_path, 'rb') as file:
|
32 |
-
content = file.read()
|
33 |
-
text = content.decode('utf-8', errors='ignore')
|
34 |
-
elif ext.lower() == '.pdf':
|
35 |
-
with open(file_path, 'rb') as file:
|
36 |
-
pdf_reader = PdfReader(file)
|
37 |
-
text = '\n'.join([page.extract_text() for page in pdf_reader.pages if page.extract_text()])
|
38 |
-
else:
|
39 |
-
print(f"Unsupported file type: {ext}")
|
40 |
-
return None
|
41 |
-
|
42 |
-
return [Document(page_content=text, metadata={"source": file_path})]
|
43 |
-
except Exception as e:
|
44 |
-
print(f"Error processing file {file_path}: {str(e)}")
|
45 |
-
return None
|
46 |
-
|
47 |
-
|
48 |
-
def process_files(file_list, progress=gr.Progress()):
|
49 |
-
global vector_store
|
50 |
-
documents = []
|
51 |
-
total_files = len(file_list)
|
52 |
-
|
53 |
-
for i, file in enumerate(file_list):
|
54 |
-
progress((i + 1) / total_files, f"Processing file {i + 1} of {total_files}")
|
55 |
-
if file.name.lower().endswith(('.txt', '.docx', '.pdf')):
|
56 |
-
docs = process_file(file.name)
|
57 |
-
if docs:
|
58 |
-
documents.extend(docs)
|
59 |
-
|
60 |
-
if not documents:
|
61 |
-
return "No documents were successfully processed. Please check your files and try again."
|
62 |
-
|
63 |
-
progress(0.5, "Splitting text")
|
64 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=200)
|
65 |
-
texts = text_splitter.split_documents(documents)
|
66 |
-
|
67 |
-
progress(0.7, "Creating embeddings")
|
68 |
-
vector_store = FAISS.from_documents(texts, embeddings)
|
69 |
-
|
70 |
-
progress(0.9, "Saving vector store")
|
71 |
-
vector_store.save_local("faiss_index")
|
72 |
-
|
73 |
-
progress(1.0, "Completed")
|
74 |
-
return f"Embedding process completed and database created. Processed {len(documents)} files. You can now start chatting!"
|
75 |
-
|
76 |
-
|
77 |
-
def load_existing_index(folder_path):
|
78 |
-
global vector_store
|
79 |
-
try:
|
80 |
-
index_file = os.path.join(folder_path, "index.faiss")
|
81 |
-
pkl_file = os.path.join(folder_path, "index.pkl")
|
82 |
-
|
83 |
-
if not os.path.exists(index_file) or not os.path.exists(pkl_file):
|
84 |
-
return f"Error: FAISS index files not found in {folder_path}. Please ensure both 'index.faiss' and 'index.pkl' are present."
|
85 |
-
|
86 |
-
vector_store = FAISS.load_local(folder_path, embeddings, allow_dangerous_deserialization=True)
|
87 |
-
return f"Successfully loaded existing index from {folder_path}."
|
88 |
-
except Exception as e:
|
89 |
-
return f"Error loading index: {str(e)}"
|
90 |
-
|
91 |
-
|
92 |
-
def chat(message, history):
|
93 |
-
global vector_store
|
94 |
-
if vector_store is None:
|
95 |
-
return "Please load documents or an existing index first."
|
96 |
-
|
97 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
98 |
-
llm,
|
99 |
-
vector_store.as_retriever(),
|
100 |
-
memory=memory
|
101 |
-
)
|
102 |
-
|
103 |
-
result = qa_chain.invoke({"question": message, "chat_history": history})
|
104 |
-
return result['answer']
|
105 |
-
|
106 |
-
|
107 |
-
def reset_chat():
|
108 |
-
global memory
|
109 |
-
memory.clear()
|
110 |
-
return []
|
111 |
-
|
112 |
-
|
113 |
-
with gr.Blocks() as demo:
|
114 |
-
gr.Markdown("# Document-based Chatbot")
|
115 |
-
|
116 |
-
with gr.Row():
|
117 |
-
with gr.Column():
|
118 |
-
file_input = gr.File(label="Select Files", file_count="multiple", file_types=[".pdf", ".docx", ".txt"])
|
119 |
-
process_button = gr.Button("Process Files")
|
120 |
-
with gr.Column():
|
121 |
-
index_folder = gr.Textbox(label="Existing Index Folder Path",
|
122 |
-
value="C:\\Works\\Data\\projects\\Python\\QA_Chatbot\\faiss_index")
|
123 |
-
load_index_button = gr.Button("Load Existing Index")
|
124 |
-
|
125 |
-
output = gr.Textbox(label="Processing Output")
|
126 |
-
|
127 |
-
chatbot = gr.Chatbot()
|
128 |
-
msg = gr.Textbox()
|
129 |
-
send = gr.Button("Send")
|
130 |
-
clear = gr.Button("Clear")
|
131 |
-
|
132 |
-
|
133 |
-
def process_selected_files(files):
|
134 |
-
if files:
|
135 |
-
return process_files(files)
|
136 |
-
else:
|
137 |
-
return "No files selected. Please select files and try again."
|
138 |
-
|
139 |
-
|
140 |
-
def load_selected_index(folder_path):
|
141 |
-
return load_existing_index(folder_path)
|
142 |
-
|
143 |
-
|
144 |
-
process_button.click(process_selected_files, file_input, output)
|
145 |
-
load_index_button.click(load_selected_index, index_folder, output)
|
146 |
-
|
147 |
-
|
148 |
-
def respond(message, chat_history):
|
149 |
-
bot_message = chat(message, chat_history)
|
150 |
-
chat_history.append((message, bot_message))
|
151 |
-
return "", chat_history
|
152 |
-
|
153 |
-
|
154 |
-
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
155 |
-
send.click(respond, [msg, chatbot], [msg, chatbot])
|
156 |
-
clear.click(reset_chat, None, chatbot)
|
157 |
-
|
158 |
-
if __name__ == "__main__":
|
159 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|