File size: 6,238 Bytes
8308bbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import torch
import numpy as np
from PIL import Image
import sys
import cv2
import base64
import aiohttp
from fal import Client as FalClient
sys.path.append('./ComfyUI_AutoCropFaces')
from dotenv import load_dotenv
load_dotenv()
from Pytorch_Retinaface.pytorch_retinaface import Pytorch_RetinaFace
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers import CLIPProcessor, CLIPModel
import gc


CACHE_DIR = '/workspace/huggingface_cache'

os.environ["HF_HOME"] = CACHE_DIR
os.makedirs(CACHE_DIR, exist_ok=True)

device = "cuda"

def clear_cuda_memory():
    """Aggressively clear CUDA memory"""
    gc.collect()
    torch.cuda.empty_cache()
    torch.cuda.synchronize()


def load_vision_models():
    print("Loading CLIP and Florence models...")
    # Load CLIP
    clip_model = CLIPModel.from_pretrained(
        "openai/clip-vit-large-patch14",
        cache_dir=CACHE_DIR
    ).to(device)
    clip_processor = CLIPProcessor.from_pretrained(
        "openai/clip-vit-large-patch14",
        cache_dir=CACHE_DIR
    )

    # Load Florence
    florence_model = AutoModelForCausalLM.from_pretrained(
        "microsoft/Florence-2-large",
        torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        trust_remote_code=True,
        cache_dir=CACHE_DIR
    ).to(device)
    florence_processor = AutoProcessor.from_pretrained(
        "microsoft/Florence-2-large",
        trust_remote_code=True,
        cache_dir=CACHE_DIR
    )

    return {
        'clip_model': clip_model,
        'clip_processor': clip_processor,
        'florence_model': florence_model,
        'florence_processor': florence_processor,
    }


def generate_caption(image):
    vision_models = load_vision_models()
    
    # Ensure the image is a PIL Image
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)

    # Convert the image to RGB if it has an alpha channel
    if image.mode == 'RGBA':
        image = image.convert('RGB')

    prompt = "<DETAILED_CAPTION>"
    inputs = vision_models['florence_processor'](
        text=prompt,
        images=image,
        return_tensors="pt"
    ).to(device, torch.float16 if torch.cuda.is_available() else torch.float32)

    generated_ids = vision_models['florence_model'].generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        num_beams=3,
        do_sample=False
    )
    generated_text = vision_models['florence_processor'].batch_decode(generated_ids, skip_special_tokens=True)[0]
    parsed_answer = vision_models['florence_processor'].post_process_generation(
        generated_text, task="<DETAILED_CAPTION>",
        image_size=(image.width, image.height)
    )
    
    clear_cuda_memory()
    return parsed_answer['<DETAILED_CAPTION>']


def crop_face(image_path, output_dir, output_name, scale_factor=4.0):
    image = Image.open(image_path).convert("RGB")

    img_raw = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    img_raw = img_raw.astype(np.float32)

    rf = Pytorch_RetinaFace(
        cfg='mobile0.25',
        pretrained_path='./weights/mobilenet0.25_Final.pth',
        confidence_threshold=0.02,
        nms_threshold=0.4,
        vis_thres=0.6
    )

    dets = rf.detect_faces(img_raw)
    print("Dets: ", dets)
    
    # Instead of asserting, handle multiple faces gracefully
    if len(dets) == 0:
        print("No faces detected!")
        return False
    
    # If multiple faces detected, use the one with highest confidence
    if len(dets) > 1:
        print(f"Warning: {len(dets)} faces detected, using the one with highest confidence")
        # Assuming dets is a list of [bbox, landmark, score] and we want to sort by score
        dets = sorted(dets, key=lambda x: x[2], reverse=True)  # Sort by confidence score
        # Just keep the highest confidence detection
        dets = [dets[0]]

    # Pass the scale_factor to center_and_crop_rescale for adjustable crop size
    try:
        # Unpack the tuple correctly - the function returns (cropped_imgs, bbox_infos)
        cropped_imgs, bbox_infos = rf.center_and_crop_rescale(img_raw, dets, shift_factor=0.45, scale_factor=scale_factor)
        
        # Check if we got any cropped images
        if not cropped_imgs or len(cropped_imgs) == 0:
            print("No cropped images returned")
            return False
        
        # Use the first cropped face image directly - it's not nested
        img_to_save = cropped_imgs[0]
        
        os.makedirs(output_dir, exist_ok=True)
        cv2.imwrite(os.path.join(output_dir, output_name), img_to_save)
        print(f"Saved: {output_name}")
        return True
        
    except Exception as e:
        print(f"Error during face cropping: {e}")
        return False

async def upscale_image(image_path, output_path):
    """Upscale an image using fal.ai's RealESRGAN model"""
    fal_client = FalClient()
    
    # Read and encode the image
    with open(image_path, "rb") as image_file:
        encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
        data_uri = f"data:image/jpeg;base64,{encoded_image}"
    
    try:
        # Submit the upscaling request
        handler = await fal_client.submit_async(
            "fal-ai/real-esrgan",
            arguments={
                "image_url": data_uri,
                "scale": 2,
                "model": "RealESRGAN_x4plus",
                "output_format": "png",
                "face": True
            },
        )
        result = await handler.get()
        
        # Download and save the upscaled image
        image_url = result['image_url']
        async with aiohttp.ClientSession() as session:
            async with session.get(image_url) as response:
                if response.status == 200:
                    with open(output_path, 'wb') as f:
                        f.write(await response.read())
                    return True
                else:
                    print(f"Failed to download upscaled image: {response.status}")
                    return False
                    
    except Exception as e:
        print(f"Error during upscaling: {e}")
        return False