Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,101 Bytes
9af3c99 a125be2 709fad3 e8c9f0d 9af3c99 bf54c2a a125be2 bf54c2a 9af3c99 e8c9f0d 9af3c99 a125be2 9af3c99 e8c9f0d 709fad3 e8c9f0d 9af3c99 a125be2 e8c9f0d 9b027fd aad4f65 9b027fd aad4f65 9b027fd e8c9f0d 9b027fd e8c9f0d 9b027fd aad4f65 bf54c2a aad4f65 9af3c99 e8c9f0d bf54c2a e8c9f0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
import os
import tempfile
import hashlib
import io
import pickle
import pathlib
import sys
from main import process_face
from PIL import Image
PORT = 7860
CACHE_DIR = "./cache"
# Ensure cache directory exists
os.makedirs(CACHE_DIR, exist_ok=True)
def get_image_hash(img):
"""
Generate a hash of the image content.
Args:
img: PIL Image
Returns:
str: Hash of the image
"""
img_bytes = io.BytesIO()
img.save(img_bytes, format='PNG')
return hashlib.md5(img_bytes.getvalue()).hexdigest()
def enhance_face_gradio(input_image, ref_image):
"""
Wrapper function for process_face that works with Gradio.
Args:
input_image: Input image from Gradio
ref_image: Reference face image from Gradio
Returns:
PIL Image: Enhanced image
"""
# Generate hashes for both images
input_hash = get_image_hash(input_image)
ref_hash = get_image_hash(ref_image)
combined_hash = f"{input_hash}_{ref_hash}"
cache_path = os.path.join(CACHE_DIR, f"{combined_hash}.pkl")
# Check if result exists in cache
if os.path.exists(cache_path):
try:
with open(cache_path, 'rb') as f:
result_img = pickle.load(f)
print(f"Returning cached result for images with hash {combined_hash}")
return result_img
except (pickle.PickleError, IOError) as e:
print(f"Error loading from cache: {e}")
# Continue to processing if cache load fails
# Create temporary files for input, reference, and output
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as input_file, \
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as ref_file, \
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as output_file:
input_path = input_file.name
ref_path = ref_file.name
output_path = output_file.name
# Save uploaded images to temporary files
input_image.save(input_path)
ref_image.save(ref_path)
try:
# Process the face
process_face(
input_path=input_path,
ref_path=ref_path,
crop=False,
upscale=False,
output_path=output_path
)
except Exception as e:
# Handle the error, log it, and return an error message
print(f"Error processing face: {e}")
return "An error occurred while processing the face. Please try again."
finally:
# Clean up temporary input and reference files
os.unlink(input_path)
os.unlink(ref_path)
# Load the output image
result_img = Image.open(output_path)
# Cache the result
try:
with open(cache_path, 'wb') as f:
pickle.dump(result_img, f)
print(f"Cached result for images with hash {combined_hash}")
except (pickle.PickleError, IOError) as e:
print(f"Error caching result: {e}")
return result_img
def create_gradio_interface():
# Create the Gradio interface
with gr.Blocks(title="Face Enhancement Demo") as demo:
# Add instructions at the top
gr.Markdown("""
# Face Enhancement Demo
### Instructions
1. Upload the target image you want to enhance
2. Upload a high-quality reference face image
3. Click 'Enhance Face' to start the process
Processing takes about 60 seconds. Due to the constraints of this demo, face cropping and upscaling are not applied to the reference image.
""", elem_id="instructions")
# Add a horizontal line for separation
gr.Markdown("---")
# Main interface layout
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Target Image", type="pil")
ref_image = gr.Image(label="Reference Face", type="pil")
enhance_button = gr.Button("Enhance Face")
with gr.Column():
output_image = gr.Image(label="Enhanced Result")
enhance_button.click(
fn=enhance_face_gradio,
inputs=[input_image, ref_image],
outputs=output_image,
queue=True # Enable queue for sequential processing
)
# Add examples using gr.Examples
gr.Markdown("## Examples")
example_inps = [
["examples/dany_gpt_1.png", "examples/dany_face.jpg"],
["examples/dany_gpt_2.png", "examples/dany_face.jpg"],
]
gr.Examples(examples=example_inps, inputs=[input_image, ref_image], outputs=output_image)
# Launch the Gradio app with queue
demo.queue(max_size=99)
try:
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=PORT,
quiet=True,
show_error=True,
)
except OSError as e:
print(f"Error starting server: {e}")
sys.exit(1)
if __name__ == "__main__":
create_gradio_interface() |