CharVid / main.py
Rishi Desai
using original user promtp for video
70b7d28
import argparse
import os
import asyncio
import fal_client
import base64
import io
from PIL import Image
import requests
import shutil
from together import Together
# Create a permanent directory for outputs
OUTPUT_DIR = "output"
os.makedirs(OUTPUT_DIR, exist_ok=True)
def get_next_dir_number():
"""Get the next available directory number for output."""
existing_dirs = [d for d in os.listdir(OUTPUT_DIR)
if os.path.isdir(os.path.join(OUTPUT_DIR, d)) and d.isdigit()]
if not existing_dirs:
return 1
return max(map(int, existing_dirs)) + 1
def save_results(input_path, generated_image_path, video_path, user_prompt, optimized_prompt, output_dir=None):
"""
Save all generation results in a numbered directory within OUTPUT_DIR.
Args:
input_path: Path to the input reference image
generated_image_path: Path to the generated image
video_path: Path to the generated video
user_prompt: The original text prompt used for generation
optimized_prompt: The optimized prompt used for generation
output_dir: Optional custom output directory
Returns:
Tuple of (result_dir, saved_video_path)
"""
# If no custom output directory, create a numbered one
if output_dir is None:
dir_num = get_next_dir_number()
result_dir = os.path.join(OUTPUT_DIR, str(dir_num))
else:
result_dir = output_dir
os.makedirs(result_dir, exist_ok=True)
# Copy input image
input_image_path = os.path.join(result_dir, "input_image.png")
shutil.copy2(input_path, input_image_path)
# Copy generated image
output_image_path = os.path.join(result_dir, "generated_image.png")
shutil.copy2(generated_image_path, output_image_path)
# Copy the video file
saved_video_path = os.path.join(result_dir, "generated_video.mp4")
shutil.copy2(video_path, saved_video_path)
# Store the user prompt in a text file
with open(os.path.join(result_dir, "input_prompt.txt"), "w") as f:
f.write(user_prompt)
# Store the optimized prompt in a text file
with open(os.path.join(result_dir, "opt_prompt.txt"), "w") as f:
f.write(optimized_prompt)
print(f"All results saved to directory: {result_dir}")
return result_dir, saved_video_path
async def generate_image(ref_image, prompt):
print(f"Generating image")
handler = await fal_client.submit_async(
"fal-ai/flux-pulid",
arguments={
"prompt": prompt,
"reference_image_url": ref_image
},
)
# Wait for completion silently
async for _ in handler.iter_events():
pass
result = await handler.get()
return result
async def generate_video(image_path, prompt):
print(f"Generating video from image...'")
# Read the image file and convert to base64
with open(image_path, 'rb') as image_file:
image_data = image_file.read()
base64_image = base64.b64encode(image_data).decode('utf-8')
image_data_url = f"data:image/png;base64,{base64_image}"
handler = await fal_client.submit_async(
"fal-ai/wan-i2v",
arguments={
"prompt": prompt,
"image_url": image_data_url,
"resolution": "480p",
"guide_scale": 6.5,
"shift": 4.5,
"enable_prompt_expansion": True,
"acceleration": "regular",
"aspect_ratio": "auto"
},
)
# Wait for completion silently
async for _ in handler.iter_events():
pass
# Get the request ID from the handler
request_id = handler.request_id
# Fetch the result using the request ID
result = fal_client.result("fal-ai/wan-i2v", request_id)
return result
async def optimize_prompt(ref_image_path, user_prompt):
print(f"Optimizing prompt...")
# Initialize Together AI client
client = Together()
# Read and encode the image
with open(ref_image_path, 'rb') as image_file:
image_data = base64.b64encode(image_file.read()).decode('utf-8')
# First get a detailed caption of the image
messages = [
{"role": "system", "content": "You are an expert at describing images in detail, focusing on clothing, accessories, poses, and visual attributes."},
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_data}"}},
{"type": "text", "text": "Describe this image in detail, focusing on the clothing, accessories, pose, and any distinctive visual features."}
]
}
]
# Get image description from Llama 4
response = client.chat.completions.create(
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
messages=messages,
max_tokens=500
)
image_description = response.choices[0].message.content
# Now combine the user prompt with the image description
prompt_messages = [
{"role": "system", "content": "You are an expert at combining user prompts with detailed image descriptions to create optimal prompts for image generation. Focus on maintaining visual consistency while incorporating the user's desired changes. IMPORTANT: Return ONLY the optimized prompt without any explanations or additional text."},
{"role": "user", "content": f"""Here is a detailed description of the reference image:
{image_description}
And here is what the user wants to do with it:
{user_prompt}
Create an optimal prompt that maintains the visual details (especially clothing and accessories) while incorporating the user's desired changes. The prompt should be direct and descriptive. Return ONLY the prompt without any explanations."""}
]
# Get optimized prompt
response = client.chat.completions.create(
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
messages=prompt_messages,
max_tokens=500
)
optimized_prompt = response.choices[0].message.content.strip()
print(f"Original prompt: {user_prompt}")
print(f"Optimized prompt: {optimized_prompt}")
return optimized_prompt
async def process_async(ref, prompt, output):
print(f"Processing image:")
# If ref is a URL, download it first
if ref.startswith('http'):
response = requests.get(ref)
temp_image_path = os.path.join(output, 'temp_ref_image.png')
with open(temp_image_path, 'wb') as f:
f.write(response.content)
ref_path = temp_image_path
else:
# If ref is a data URL, decode it and save
if ref.startswith('data:image'):
base64_data = ref.split(',')[1]
image_bytes = base64.b64decode(base64_data)
temp_image_path = os.path.join(output, 'temp_ref_image.png')
with open(temp_image_path, 'wb') as f:
f.write(image_bytes)
ref_path = temp_image_path
else:
ref_path = ref
# Optimize the prompt using Together AI
optimized_prompt = await optimize_prompt(ref_path, prompt)
# Generate image using text+image with optimized prompt
result = await generate_image(ref, optimized_prompt)
# Save the result
if result and 'images' in result and len(result['images']) > 0:
# Get the first image
image_data = result['images'][0]
# Handle base64 encoded images
if isinstance(image_data, str) and image_data.startswith('data:image'):
base64_data = image_data.split(',')[1]
image_bytes = base64.b64decode(base64_data)
image = Image.open(io.BytesIO(image_bytes))
# Handle URL responses
elif isinstance(image_data, dict) and 'url' in image_data:
response = requests.get(image_data['url'])
image = Image.open(io.BytesIO(response.content))
else:
print(f"Unexpected image format in response: {type(image_data)}")
return None
# Save the image
output_filename = os.path.join(output, 'generated_image.png')
image.save(output_filename)
print(f"Generated image saved to: {output_filename}")
# Generate video from the saved image using the original prompt
video_result = await generate_video(output_filename, prompt)
# Save the video if available
if video_result and isinstance(video_result, dict) and 'video' in video_result:
video_url = video_result['video']['url']
video_response = requests.get(video_url)
if video_response.status_code == 200:
video_filename = os.path.join(output, 'generated_video.mp4')
with open(video_filename, 'wb') as f:
f.write(video_response.content)
print(f"Generated video saved to: {video_filename}")
# Save the results to a numbered directory if output is not already a numbered directory
if output != os.path.join(OUTPUT_DIR, str(get_next_dir_number() - 1)):
result_dir, saved_video_path = save_results(
ref_path, output_filename, video_filename, prompt, optimized_prompt
)
return result, output_filename, saved_video_path
return result, output_filename, video_filename
else:
print(f"Failed to download video. Status code: {video_response.status_code}")
else:
print("Error: No video URL in response")
return result, output_filename, None
else:
print("Error: Failed to generate image")
return None
def process(ref, prompt, output):
return asyncio.run(process_async(ref, prompt, output))
def main():
# Set up command line argument parsing
parser = argparse.ArgumentParser(description='Process an image with a text prompt and generate a video')
parser.add_argument('--ref', type=str, required=True, help='URL or path to the reference image')
parser.add_argument('--prompt', type=str, required=True, help='Text prompt')
parser.add_argument('--output', type=str, default=None, help='Optional custom output directory. If not provided, a numbered directory will be created.')
# Parse arguments
args = parser.parse_args()
# Determine output directory
if args.output:
output_dir = args.output
os.makedirs(output_dir, exist_ok=True)
print(f"Using custom output directory: {output_dir}")
else:
# Create a temporary processing directory
temp_dir = os.path.join(OUTPUT_DIR, "temp")
os.makedirs(temp_dir, exist_ok=True)
output_dir = temp_dir
# Print the provided arguments
print(f"Reference image: {args.ref}")
print(f"Text prompt: {args.prompt}")
# Process the image and generate video
result, image_path, video_path = process(args.ref, args.prompt, output_dir)
if result and image_path and video_path:
print("Processing complete")
return 0
else:
print("Processing failed")
return 1
if __name__ == "__main__":
exit(main())