rcook commited on
Commit
8c5bbad
·
verified ·
1 Parent(s): e9ab64b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -3
app.py CHANGED
@@ -54,10 +54,20 @@ def summarize():
54
  return {k: round(v, 4) for k, v in result.items()}
55
 
56
  model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
 
 
 
 
 
 
 
 
 
57
 
58
  training_args = Seq2SeqTrainingArguments(
59
- output_dir="my_awesome_billsum_model",
60
- eval_strategy="no",
 
61
  learning_rate=2e-5,
62
  per_device_train_batch_size=16, # Increase batch size
63
  per_device_eval_batch_size=16,
@@ -68,9 +78,11 @@ def summarize():
68
  fp16=True, # Keep mixed precision
69
  push_to_hub=False,
70
  # optim="adamw_bnb_8bit", # Use 8-bit optimizer
71
- logging_steps=100, # Reduce logging overhead
 
72
  dataloader_num_workers=4, # Speed up data loading
73
  save_strategy="epoch", # Reduce checkpointing overhead
 
74
  gradient_accumulation_steps=4 # Effective larger batch size
75
  )
76
  trainer = Seq2SeqTrainer(
 
54
  return {k: round(v, 4) for k, v in result.items()}
55
 
56
  model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
 
67
  training_args = Seq2SeqTrainingArguments(
68
+ output_dir="./results",
69
+ logging_dir="./logs", # Save logs here
70
+ eval_strategy="steps",
71
  learning_rate=2e-5,
72
  per_device_train_batch_size=16, # Increase batch size
73
  per_device_eval_batch_size=16,
 
78
  fp16=True, # Keep mixed precision
79
  push_to_hub=False,
80
  # optim="adamw_bnb_8bit", # Use 8-bit optimizer
81
+ logging_steps=10, # Log every 10 steps
82
+ logging_strategy="steps",
83
  dataloader_num_workers=4, # Speed up data loading
84
  save_strategy="epoch", # Reduce checkpointing overhead
85
+ save_steps=500,
86
  gradient_accumulation_steps=4 # Effective larger batch size
87
  )
88
  trainer = Seq2SeqTrainer(