Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,201 +1,24 @@
|
|
1 |
|
2 |
|
3 |
|
4 |
-
# import spaces
|
5 |
-
# import torch
|
6 |
-
|
7 |
-
# import gradio as gr
|
8 |
-
# import yt_dlp as youtube_dl
|
9 |
-
# from pytubefix import YouTube
|
10 |
-
# from pytubefix.cli import on_progress
|
11 |
-
|
12 |
-
# from transformers import pipeline
|
13 |
-
# from transformers.pipelines.audio_utils import ffmpeg_read
|
14 |
-
|
15 |
-
# import tempfile
|
16 |
-
# import os
|
17 |
-
|
18 |
-
# MODEL_NAME = "razhan/whisper-base-hawrami-transcription"
|
19 |
-
# BATCH_SIZE = 1
|
20 |
-
# FILE_LIMIT_MB = 10
|
21 |
-
# YT_LENGTH_LIMIT_S = 60 * 10 # limit to 1 hour YouTube files
|
22 |
-
|
23 |
-
# device = 0 if torch.cuda.is_available() else "cpu"
|
24 |
-
|
25 |
-
# pipe = pipeline(
|
26 |
-
# task="automatic-speech-recognition",
|
27 |
-
# model=MODEL_NAME,
|
28 |
-
# chunk_length_s=30,
|
29 |
-
# device=device,
|
30 |
-
# )
|
31 |
-
|
32 |
-
|
33 |
-
# # @spaces.GPU
|
34 |
-
# def transcribe(inputs, task="transcribe"):
|
35 |
-
# if inputs is None:
|
36 |
-
# raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
37 |
-
|
38 |
-
# text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
39 |
-
# return text
|
40 |
-
|
41 |
-
|
42 |
-
# def _return_yt_html_embed(yt_url):
|
43 |
-
# video_id = yt_url.split("?v=")[-1]
|
44 |
-
# HTML_str = (
|
45 |
-
# f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
46 |
-
# " </center>"
|
47 |
-
# )
|
48 |
-
# return HTML_str
|
49 |
-
|
50 |
-
# # def download_yt_audio(yt_url, filename):
|
51 |
-
# # info_loader = youtube_dl.YoutubeDL()
|
52 |
-
|
53 |
-
# # try:
|
54 |
-
# # info = info_loader.extract_info(yt_url, download=False)
|
55 |
-
# # except youtube_dl.utils.DownloadError as err:
|
56 |
-
# # raise gr.Error(str(err))
|
57 |
-
|
58 |
-
# # file_length = info["duration_string"]
|
59 |
-
# # file_h_m_s = file_length.split(":")
|
60 |
-
# # file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
61 |
-
|
62 |
-
# # if len(file_h_m_s) == 1:
|
63 |
-
# # file_h_m_s.insert(0, 0)
|
64 |
-
# # if len(file_h_m_s) == 2:
|
65 |
-
# # file_h_m_s.insert(0, 0)
|
66 |
-
# # file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
67 |
-
|
68 |
-
# # if file_length_s > YT_LENGTH_LIMIT_S:
|
69 |
-
# # yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
70 |
-
# # file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
71 |
-
# # raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
72 |
-
|
73 |
-
# # ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
74 |
-
|
75 |
-
# # with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
76 |
-
# # try:
|
77 |
-
# # ydl.download([yt_url])
|
78 |
-
# # except youtube_dl.utils.ExtractorError as err:
|
79 |
-
# # raise gr.Error(str(err))
|
80 |
-
# # yt = pt.YouTube(yt_url)
|
81 |
-
# # stream = yt.streams.filter(only_audio=True)[0]
|
82 |
-
# # stream.download(filename=filename)
|
83 |
-
|
84 |
-
# # @spaces.GPU
|
85 |
-
# # def yt_transcribe(yt_url, task="transcribe", max_filesize=75.0):
|
86 |
-
# # html_embed_str = _return_yt_html_embed(yt_url)
|
87 |
-
|
88 |
-
# # with tempfile.TemporaryDirectory() as tmpdirname:
|
89 |
-
# # # filepath = os.path.join(tmpdirname, "video.mp4")
|
90 |
-
# # filepath = os.path.join(tmpdirname, "audio.mp3")
|
91 |
-
# # download_yt_audio(yt_url, filepath)
|
92 |
-
# # with open(filepath, "rb") as f:
|
93 |
-
# # inputs = f.read()
|
94 |
-
|
95 |
-
# # inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
96 |
-
# # inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
97 |
-
|
98 |
-
# # text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
99 |
-
|
100 |
-
# # return html_embed_str, text
|
101 |
-
|
102 |
-
|
103 |
-
# def yt_transcribe(yt_url, task="transcribe", progress=gr.Progress(), max_filesize=75.0):
|
104 |
-
# progress(0, desc="Loading audio file...")
|
105 |
-
# html_embed_str = _return_yt_html_embed(yt_url)
|
106 |
-
# try:
|
107 |
-
# # yt = pytube.YouTube(yt_url)
|
108 |
-
# # stream = yt.streams.filter(only_audio=True)[0]
|
109 |
-
# yt = YouTube(yt_url, on_progress_callback = on_progress, use_po_token=True)
|
110 |
-
|
111 |
-
# stream = yt.streams.get_audio_only()
|
112 |
-
|
113 |
-
# except:
|
114 |
-
# raise gr.Error("An error occurred while loading the YouTube video. Please try again.")
|
115 |
-
|
116 |
-
# if stream.filesize_mb > max_filesize:
|
117 |
-
# raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {stream.filesize_mb:.2f}MB.")
|
118 |
-
|
119 |
-
# # stream.download(filename="audio.mp3")
|
120 |
-
# stream.download(filename="audio.mp3", mp3=True)
|
121 |
-
|
122 |
-
# with open("audio.mp3", "rb") as f:
|
123 |
-
# inputs = f.read()
|
124 |
-
|
125 |
-
# inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
126 |
-
# inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
127 |
-
# text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
128 |
-
# return html_embed_str, text
|
129 |
-
|
130 |
-
|
131 |
-
# demo = gr.Blocks(theme=gr.themes.Ocean())
|
132 |
-
|
133 |
-
# mf_transcribe = gr.Interface(
|
134 |
-
# fn=transcribe,
|
135 |
-
# inputs=[
|
136 |
-
# gr.Audio(sources="microphone", type="filepath"),
|
137 |
-
# # gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
138 |
-
# ],
|
139 |
-
# outputs="text",
|
140 |
-
# title="Whisper Horami Demo: Transcribe Audio",
|
141 |
-
# description=(
|
142 |
-
# "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
143 |
-
# f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
144 |
-
# " of arbitrary length."
|
145 |
-
# ),
|
146 |
-
# flagging_mode="never",
|
147 |
-
# )
|
148 |
-
|
149 |
-
# file_transcribe = gr.Interface(
|
150 |
-
# fn=transcribe,
|
151 |
-
# inputs=[
|
152 |
-
# gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
153 |
-
# # gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
154 |
-
# ],
|
155 |
-
# outputs="text",
|
156 |
-
# title="Whisper Horami Demo: Transcribe Audio",
|
157 |
-
# description=(
|
158 |
-
# "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
159 |
-
# f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
160 |
-
# " of arbitrary length."
|
161 |
-
# ),
|
162 |
-
# flagging_mode="never",
|
163 |
-
# )
|
164 |
-
|
165 |
-
# yt_transcribe = gr.Interface(
|
166 |
-
# fn=yt_transcribe,
|
167 |
-
# inputs=[
|
168 |
-
# gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
169 |
-
# # gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
170 |
-
# ],
|
171 |
-
# outputs=["html", "text"],
|
172 |
-
# title="Whisper Horami Demo: Translate YouTube",
|
173 |
-
# description=(
|
174 |
-
# "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
175 |
-
# f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
176 |
-
# " arbitrary length."
|
177 |
-
# ),
|
178 |
-
# flagging_mode="never",
|
179 |
-
# )
|
180 |
-
|
181 |
-
# with demo:
|
182 |
-
# # gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
183 |
-
# gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
|
184 |
-
|
185 |
-
# demo.queue().launch(ssr_mode=False)
|
186 |
-
|
187 |
import spaces
|
188 |
import torch
|
|
|
189 |
import gradio as gr
|
|
|
190 |
from pytubefix import YouTube
|
191 |
from pytubefix.cli import on_progress
|
|
|
192 |
from transformers import pipeline
|
193 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
194 |
import tempfile
|
195 |
import os
|
196 |
|
197 |
MODEL_NAME = "razhan/whisper-base-hawrami-transcription"
|
198 |
BATCH_SIZE = 1
|
|
|
|
|
199 |
|
200 |
device = 0 if torch.cuda.is_available() else "cpu"
|
201 |
|
@@ -206,83 +29,260 @@ pipe = pipeline(
|
|
206 |
device=device,
|
207 |
)
|
208 |
|
|
|
|
|
209 |
def transcribe(inputs, task="transcribe"):
|
210 |
if inputs is None:
|
211 |
-
raise gr.Error("Please upload or record an audio file before submitting.")
|
|
|
|
|
|
|
212 |
|
213 |
-
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
214 |
-
return result["text"]
|
215 |
|
216 |
def _return_yt_html_embed(yt_url):
|
217 |
video_id = yt_url.split("?v=")[-1]
|
218 |
-
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
def
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
try:
|
225 |
-
yt = YouTube(yt_url
|
|
|
|
|
|
|
226 |
stream = yt.streams.get_audio_only()
|
227 |
-
except Exception as e:
|
228 |
-
raise gr.Error(f"Error loading YouTube video: {str(e)}")
|
229 |
-
|
230 |
-
with tempfile.TemporaryDirectory() as tmpdir:
|
231 |
-
file_path = os.path.join(tmpdir, "audio.mp3")
|
232 |
-
stream.download(filename=file_path)
|
233 |
|
234 |
-
|
235 |
-
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
241 |
-
return html_embed, result["text"]
|
242 |
|
243 |
-
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
]
|
|
|
|
|
|
|
|
|
248 |
|
249 |
mf_transcribe = gr.Interface(
|
250 |
fn=transcribe,
|
251 |
inputs=[
|
252 |
gr.Audio(sources="microphone", type="filepath"),
|
253 |
-
|
254 |
],
|
255 |
outputs="text",
|
256 |
-
title="Whisper Horami:
|
257 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
258 |
)
|
259 |
|
260 |
file_transcribe = gr.Interface(
|
261 |
fn=transcribe,
|
262 |
inputs=[
|
263 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
264 |
-
|
265 |
],
|
266 |
outputs="text",
|
267 |
-
title="Whisper Horami:
|
268 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
269 |
)
|
270 |
|
271 |
-
|
272 |
fn=yt_transcribe,
|
273 |
inputs=[
|
274 |
-
gr.Textbox(placeholder="YouTube
|
275 |
-
|
276 |
],
|
277 |
outputs=["html", "text"],
|
278 |
-
title="Whisper Horami: YouTube
|
279 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
280 |
)
|
281 |
|
282 |
with demo:
|
283 |
-
gr.TabbedInterface(
|
284 |
-
|
285 |
-
["Microphone", "Audio File",]
|
286 |
-
)
|
287 |
|
288 |
demo.queue().launch(ssr_mode=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
|
7 |
import gradio as gr
|
8 |
+
import yt_dlp as youtube_dl
|
9 |
from pytubefix import YouTube
|
10 |
from pytubefix.cli import on_progress
|
11 |
+
|
12 |
from transformers import pipeline
|
13 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
14 |
+
|
15 |
import tempfile
|
16 |
import os
|
17 |
|
18 |
MODEL_NAME = "razhan/whisper-base-hawrami-transcription"
|
19 |
BATCH_SIZE = 1
|
20 |
+
FILE_LIMIT_MB = 10
|
21 |
+
YT_LENGTH_LIMIT_S = 60 * 10 # limit to 1 hour YouTube files
|
22 |
|
23 |
device = 0 if torch.cuda.is_available() else "cpu"
|
24 |
|
|
|
29 |
device=device,
|
30 |
)
|
31 |
|
32 |
+
|
33 |
+
# @spaces.GPU
|
34 |
def transcribe(inputs, task="transcribe"):
|
35 |
if inputs is None:
|
36 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
37 |
+
|
38 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
39 |
+
return text
|
40 |
|
|
|
|
|
41 |
|
42 |
def _return_yt_html_embed(yt_url):
|
43 |
video_id = yt_url.split("?v=")[-1]
|
44 |
+
HTML_str = (
|
45 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
46 |
+
" </center>"
|
47 |
+
)
|
48 |
+
return HTML_str
|
49 |
|
50 |
+
# def download_yt_audio(yt_url, filename):
|
51 |
+
# info_loader = youtube_dl.YoutubeDL()
|
52 |
+
|
53 |
+
# try:
|
54 |
+
# info = info_loader.extract_info(yt_url, download=False)
|
55 |
+
# except youtube_dl.utils.DownloadError as err:
|
56 |
+
# raise gr.Error(str(err))
|
57 |
+
|
58 |
+
# file_length = info["duration_string"]
|
59 |
+
# file_h_m_s = file_length.split(":")
|
60 |
+
# file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
61 |
+
|
62 |
+
# if len(file_h_m_s) == 1:
|
63 |
+
# file_h_m_s.insert(0, 0)
|
64 |
+
# if len(file_h_m_s) == 2:
|
65 |
+
# file_h_m_s.insert(0, 0)
|
66 |
+
# file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
67 |
+
|
68 |
+
# if file_length_s > YT_LENGTH_LIMIT_S:
|
69 |
+
# yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
70 |
+
# file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
71 |
+
# raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
72 |
|
73 |
+
# ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
74 |
+
|
75 |
+
# with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
76 |
+
# try:
|
77 |
+
# ydl.download([yt_url])
|
78 |
+
# except youtube_dl.utils.ExtractorError as err:
|
79 |
+
# raise gr.Error(str(err))
|
80 |
+
# yt = pt.YouTube(yt_url)
|
81 |
+
# stream = yt.streams.filter(only_audio=True)[0]
|
82 |
+
# stream.download(filename=filename)
|
83 |
+
|
84 |
+
# @spaces.GPU
|
85 |
+
# def yt_transcribe(yt_url, task="transcribe", max_filesize=75.0):
|
86 |
+
# html_embed_str = _return_yt_html_embed(yt_url)
|
87 |
+
|
88 |
+
# with tempfile.TemporaryDirectory() as tmpdirname:
|
89 |
+
# # filepath = os.path.join(tmpdirname, "video.mp4")
|
90 |
+
# filepath = os.path.join(tmpdirname, "audio.mp3")
|
91 |
+
# download_yt_audio(yt_url, filepath)
|
92 |
+
# with open(filepath, "rb") as f:
|
93 |
+
# inputs = f.read()
|
94 |
+
|
95 |
+
# inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
96 |
+
# inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
97 |
+
|
98 |
+
# text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
99 |
+
|
100 |
+
# return html_embed_str, text
|
101 |
+
|
102 |
+
|
103 |
+
def yt_transcribe(yt_url, task="transcribe", progress=gr.Progress(), max_filesize=75.0):
|
104 |
+
progress(0, desc="Loading audio file...")
|
105 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
106 |
try:
|
107 |
+
# yt = pytube.YouTube(yt_url)
|
108 |
+
# stream = yt.streams.filter(only_audio=True)[0]
|
109 |
+
yt = YouTube(yt_url, on_progress_callback = on_progress, use_po_token=True)
|
110 |
+
|
111 |
stream = yt.streams.get_audio_only()
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
except:
|
114 |
+
raise gr.Error("An error occurred while loading the YouTube video. Please try again.")
|
115 |
|
116 |
+
if stream.filesize_mb > max_filesize:
|
117 |
+
raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {stream.filesize_mb:.2f}MB.")
|
|
|
|
|
|
|
118 |
|
119 |
+
# stream.download(filename="audio.mp3")
|
120 |
+
stream.download(filename="audio.mp3", mp3=True)
|
121 |
+
|
122 |
+
with open("audio.mp3", "rb") as f:
|
123 |
+
inputs = f.read()
|
124 |
|
125 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
126 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
127 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
128 |
+
return html_embed_str, text
|
129 |
+
|
130 |
+
|
131 |
+
demo = gr.Blocks(theme=gr.themes.Ocean())
|
132 |
|
133 |
mf_transcribe = gr.Interface(
|
134 |
fn=transcribe,
|
135 |
inputs=[
|
136 |
gr.Audio(sources="microphone", type="filepath"),
|
137 |
+
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
138 |
],
|
139 |
outputs="text",
|
140 |
+
title="Whisper Horami Demo: Transcribe Audio",
|
141 |
+
description=(
|
142 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
143 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
144 |
+
" of arbitrary length."
|
145 |
+
),
|
146 |
+
flagging_mode="never",
|
147 |
)
|
148 |
|
149 |
file_transcribe = gr.Interface(
|
150 |
fn=transcribe,
|
151 |
inputs=[
|
152 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
153 |
+
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
154 |
],
|
155 |
outputs="text",
|
156 |
+
title="Whisper Horami Demo: Transcribe Audio",
|
157 |
+
description=(
|
158 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
159 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
160 |
+
" of arbitrary length."
|
161 |
+
),
|
162 |
+
flagging_mode="never",
|
163 |
)
|
164 |
|
165 |
+
yt_transcribe = gr.Interface(
|
166 |
fn=yt_transcribe,
|
167 |
inputs=[
|
168 |
+
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
169 |
+
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
170 |
],
|
171 |
outputs=["html", "text"],
|
172 |
+
title="Whisper Horami Demo: Translate YouTube",
|
173 |
+
description=(
|
174 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
175 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
176 |
+
" arbitrary length."
|
177 |
+
),
|
178 |
+
flagging_mode="never",
|
179 |
)
|
180 |
|
181 |
with demo:
|
182 |
+
# gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
183 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
|
|
|
|
|
184 |
|
185 |
demo.queue().launch(ssr_mode=False)
|
186 |
+
|
187 |
+
# import spaces
|
188 |
+
# import torch
|
189 |
+
# import gradio as gr
|
190 |
+
# from pytubefix import YouTube
|
191 |
+
# from pytubefix.cli import on_progress
|
192 |
+
# from transformers import pipeline
|
193 |
+
# from transformers.pipelines.audio_utils import ffmpeg_read
|
194 |
+
# import tempfile
|
195 |
+
# import os
|
196 |
+
|
197 |
+
# MODEL_NAME = "razhan/whisper-base-hawrami-transcription"
|
198 |
+
# BATCH_SIZE = 1
|
199 |
+
|
200 |
+
# device = 0 if torch.cuda.is_available() else "cpu"
|
201 |
+
|
202 |
+
# pipe = pipeline(
|
203 |
+
# task="automatic-speech-recognition",
|
204 |
+
# model=MODEL_NAME,
|
205 |
+
# chunk_length_s=30,
|
206 |
+
# device=device,
|
207 |
+
# )
|
208 |
+
|
209 |
+
# def transcribe(inputs, task="transcribe"):
|
210 |
+
# if inputs is None:
|
211 |
+
# raise gr.Error("Please upload or record an audio file before submitting.")
|
212 |
+
|
213 |
+
# result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
214 |
+
# return result["text"]
|
215 |
+
|
216 |
+
# def _return_yt_html_embed(yt_url):
|
217 |
+
# video_id = yt_url.split("?v=")[-1]
|
218 |
+
# return f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>'
|
219 |
+
|
220 |
+
# def yt_transcribe(yt_url, task="transcribe", progress=gr.Progress()):
|
221 |
+
# progress(0, desc="Loading audio file...")
|
222 |
+
# html_embed = _return_yt_html_embed(yt_url)
|
223 |
+
|
224 |
+
# try:
|
225 |
+
# yt = YouTube(yt_url, on_progress_callback=on_progress, use_po_token=True)
|
226 |
+
# stream = yt.streams.get_audio_only()
|
227 |
+
# except Exception as e:
|
228 |
+
# raise gr.Error(f"Error loading YouTube video: {str(e)}")
|
229 |
+
|
230 |
+
# with tempfile.TemporaryDirectory() as tmpdir:
|
231 |
+
# file_path = os.path.join(tmpdir, "audio.mp3")
|
232 |
+
# stream.download(filename=file_path)
|
233 |
+
|
234 |
+
# with open(file_path, "rb") as f:
|
235 |
+
# audio_data = f.read()
|
236 |
+
|
237 |
+
# audio = ffmpeg_read(audio_data, pipe.feature_extractor.sampling_rate)
|
238 |
+
# inputs = {"array": audio, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
239 |
+
|
240 |
+
# result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
241 |
+
# return html_embed, result["text"]
|
242 |
+
|
243 |
+
# demo = gr.Blocks(theme=gr.themes.Ocean())
|
244 |
+
|
245 |
+
# common_inputs = [
|
246 |
+
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
247 |
+
# ]
|
248 |
+
|
249 |
+
# mf_transcribe = gr.Interface(
|
250 |
+
# fn=transcribe,
|
251 |
+
# inputs=[
|
252 |
+
# gr.Audio(sources="microphone", type="filepath"),
|
253 |
+
# *common_inputs
|
254 |
+
# ],
|
255 |
+
# outputs="text",
|
256 |
+
# title="Whisper Horami: Live Transcription",
|
257 |
+
# description="Transcribe audio from your microphone in real-time"
|
258 |
+
# )
|
259 |
+
|
260 |
+
# file_transcribe = gr.Interface(
|
261 |
+
# fn=transcribe,
|
262 |
+
# inputs=[
|
263 |
+
# gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
264 |
+
# *common_inputs
|
265 |
+
# ],
|
266 |
+
# outputs="text",
|
267 |
+
# title="Whisper Horami: File Transcription",
|
268 |
+
# description="Upload an audio file for transcription"
|
269 |
+
# )
|
270 |
+
|
271 |
+
# yt_interface = gr.Interface(
|
272 |
+
# fn=yt_transcribe,
|
273 |
+
# inputs=[
|
274 |
+
# gr.Textbox(placeholder="YouTube URL", label="Video URL"),
|
275 |
+
# *common_inputs
|
276 |
+
# ],
|
277 |
+
# outputs=["html", "text"],
|
278 |
+
# title="Whisper Horami: YouTube Transcription",
|
279 |
+
# description="Transcribe audio from YouTube videos"
|
280 |
+
# )
|
281 |
+
|
282 |
+
# with demo:
|
283 |
+
# gr.TabbedInterface(
|
284 |
+
# [mf_transcribe, file_transcribe],
|
285 |
+
# ["Microphone", "Audio File",]
|
286 |
+
# )
|
287 |
+
|
288 |
+
# demo.queue().launch(ssr_mode=False)
|