Spaces:
Running
Running
raymondEDS
commited on
Commit
·
63a7f01
1
Parent(s):
1289315
Week 2 HW
Browse files- .DS_Store +0 -0
- Reference files/Week2_ref/Ch02-statlearn-lab.ipynb +3229 -0
- Reference files/Week2_ref/Lecture_1_basics.ipynb +0 -0
- app/.DS_Store +0 -0
- app/__pycache__/main.cpython-311.pyc +0 -0
- app/components/__pycache__/login.cpython-311.pyc +0 -0
- app/components/login.py +6 -2
- app/main.py +19 -170
- app/pages/.DS_Store +0 -0
- app/pages/1_Week_1.py +0 -168
- app/pages/__pycache__/week_1.cpython-311.pyc +0 -0
- app/pages/__pycache__/week_2.cpython-311.pyc +0 -0
- app/pages/week_1.py +8 -149
- app/pages/week_1_WIP.py +159 -0
- app/pages/week_2.py +228 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Reference files/Week2_ref/Ch02-statlearn-lab.ipynb
ADDED
@@ -0,0 +1,3229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "245f0c86",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"\n",
|
9 |
+
"# Chapter 2\n",
|
10 |
+
"\n",
|
11 |
+
"# Lab: Introduction to Python\n",
|
12 |
+
"\n"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "markdown",
|
17 |
+
"id": "5ab29948",
|
18 |
+
"metadata": {},
|
19 |
+
"source": [
|
20 |
+
"## Getting Started"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "markdown",
|
25 |
+
"id": "ed622870",
|
26 |
+
"metadata": {},
|
27 |
+
"source": [
|
28 |
+
"To run the labs in this book, you will need two things:\n",
|
29 |
+
"\n",
|
30 |
+
"* An installation of `Python3`, which is the specific version of `Python` used in the labs. \n",
|
31 |
+
"* Access to `Jupyter`, a very popular `Python` interface that runs code through a file called a *notebook*. "
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "markdown",
|
36 |
+
"id": "844d37fc",
|
37 |
+
"metadata": {},
|
38 |
+
"source": [
|
39 |
+
"You can download and install `Python3` by following the instructions available at [anaconda.com](http://anaconda.com). "
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "markdown",
|
44 |
+
"id": "462ff1fe",
|
45 |
+
"metadata": {},
|
46 |
+
"source": [
|
47 |
+
" There are a number of ways to get access to `Jupyter`. Here are just a few:\n",
|
48 |
+
" \n",
|
49 |
+
" * Using Google's `Colaboratory` service: [colab.research.google.com/](https://colab.research.google.com/). \n",
|
50 |
+
" * Using `JupyterHub`, available at [jupyter.org/hub](https://jupyter.org/hub). \n",
|
51 |
+
" * Using your own `jupyter` installation. Installation instructions are available at [jupyter.org/install](https://jupyter.org/install). \n",
|
52 |
+
" \n",
|
53 |
+
"Please see the `Python` resources page on the book website [statlearning.com](https://www.statlearning.com) for up-to-date information about getting `Python` and `Jupyter` working on your computer. \n",
|
54 |
+
"\n",
|
55 |
+
"You will need to install the `ISLP` package, which provides access to the datasets and custom-built functions that we provide.\n",
|
56 |
+
"Inside a macOS or Linux terminal type `pip install ISLP`; this also installs most other packages needed in the labs. The `Python` resources page has a link to the `ISLP` documentation website.\n",
|
57 |
+
"\n",
|
58 |
+
"To run this lab, download the file `Ch2-statlearn-lab.ipynb` from the `Python` resources page. \n",
|
59 |
+
"Now run the following code at the command line: `jupyter lab Ch2-statlearn-lab.ipynb`.\n",
|
60 |
+
"\n",
|
61 |
+
"If you're using Windows, you can use the `start menu` to access `anaconda`, and follow the links. For example, to install `ISLP` and run this lab, you can run the same code above in an `anaconda` shell.\n"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "markdown",
|
66 |
+
"id": "b46f9182",
|
67 |
+
"metadata": {},
|
68 |
+
"source": [
|
69 |
+
"## Basic Commands\n"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "markdown",
|
74 |
+
"id": "54060fd9",
|
75 |
+
"metadata": {},
|
76 |
+
"source": [
|
77 |
+
"In this lab, we will introduce some simple `Python` commands. \n",
|
78 |
+
" For more resources about `Python` in general, readers may want to consult the tutorial at [docs.python.org/3/tutorial/](https://docs.python.org/3/tutorial/). \n",
|
79 |
+
"\n",
|
80 |
+
"\n",
|
81 |
+
" \n"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "markdown",
|
86 |
+
"id": "d3dbd0e9",
|
87 |
+
"metadata": {},
|
88 |
+
"source": [
|
89 |
+
"Like most programming languages, `Python` uses *functions*\n",
|
90 |
+
"to perform operations. To run a\n",
|
91 |
+
"function called `fun`, we type\n",
|
92 |
+
"`fun(input1,input2)`, where the inputs (or *arguments*)\n",
|
93 |
+
"`input1` and `input2` tell\n",
|
94 |
+
"`Python` how to run the function. A function can have any number of\n",
|
95 |
+
"inputs. For example, the\n",
|
96 |
+
"`print()` function outputs a text representation of all of its arguments to the console."
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": 1,
|
102 |
+
"id": "9e8aa21f",
|
103 |
+
"metadata": {
|
104 |
+
"execution": {}
|
105 |
+
},
|
106 |
+
"outputs": [
|
107 |
+
{
|
108 |
+
"name": "stdout",
|
109 |
+
"output_type": "stream",
|
110 |
+
"text": [
|
111 |
+
"fit a model with 11 variables\n"
|
112 |
+
]
|
113 |
+
}
|
114 |
+
],
|
115 |
+
"source": [
|
116 |
+
"print('fit a model with', 11, 'variables')\n"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "markdown",
|
121 |
+
"id": "27d935f8",
|
122 |
+
"metadata": {},
|
123 |
+
"source": [
|
124 |
+
" The following command will provide information about the `print()` function."
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": null,
|
130 |
+
"id": "d62ec119",
|
131 |
+
"metadata": {
|
132 |
+
"execution": {}
|
133 |
+
},
|
134 |
+
"outputs": [],
|
135 |
+
"source": [
|
136 |
+
"print?\n"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "markdown",
|
141 |
+
"id": "04b3e2a3",
|
142 |
+
"metadata": {},
|
143 |
+
"source": [
|
144 |
+
"Adding two integers in `Python` is pretty intuitive."
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": null,
|
150 |
+
"id": "c64e9f4d",
|
151 |
+
"metadata": {
|
152 |
+
"execution": {}
|
153 |
+
},
|
154 |
+
"outputs": [],
|
155 |
+
"source": [
|
156 |
+
"3 + 5\n"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "markdown",
|
161 |
+
"id": "cd754cba",
|
162 |
+
"metadata": {},
|
163 |
+
"source": [
|
164 |
+
"In `Python`, textual data is handled using\n",
|
165 |
+
"*strings*. For instance, `\"hello\"` and\n",
|
166 |
+
"`'hello'`\n",
|
167 |
+
"are strings. \n",
|
168 |
+
"We can concatenate them using the addition `+` symbol."
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "code",
|
173 |
+
"execution_count": null,
|
174 |
+
"id": "9abccc1f",
|
175 |
+
"metadata": {
|
176 |
+
"execution": {}
|
177 |
+
},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"\"hello\" + \"world\"\n"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "markdown",
|
185 |
+
"id": "c28db903",
|
186 |
+
"metadata": {},
|
187 |
+
"source": [
|
188 |
+
" A string is actually a type of *sequence*: this is a generic term for an ordered list. \n",
|
189 |
+
" The three most important types of sequences are lists, tuples, and strings. \n",
|
190 |
+
"We introduce lists now. "
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "markdown",
|
195 |
+
"id": "5fdcc5a1",
|
196 |
+
"metadata": {},
|
197 |
+
"source": [
|
198 |
+
"The following command instructs `Python` to join together\n",
|
199 |
+
"the numbers 3, 4, and 5, and to save them as a\n",
|
200 |
+
"*list* named `x`. When we\n",
|
201 |
+
"type `x`, it gives us back the list."
|
202 |
+
]
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"cell_type": "code",
|
206 |
+
"execution_count": null,
|
207 |
+
"id": "802ca33c",
|
208 |
+
"metadata": {
|
209 |
+
"execution": {}
|
210 |
+
},
|
211 |
+
"outputs": [],
|
212 |
+
"source": [
|
213 |
+
"x = [3, 4, 5]\n",
|
214 |
+
"x\n"
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"cell_type": "markdown",
|
219 |
+
"id": "5492ecd1",
|
220 |
+
"metadata": {},
|
221 |
+
"source": [
|
222 |
+
"Note that we used the brackets\n",
|
223 |
+
"`[]` to construct this list. \n",
|
224 |
+
"\n",
|
225 |
+
"We will often want to add two sets of numbers together. It is reasonable to try the following code,\n",
|
226 |
+
"though it will not produce the desired results."
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": null,
|
232 |
+
"id": "a8c72744",
|
233 |
+
"metadata": {
|
234 |
+
"execution": {}
|
235 |
+
},
|
236 |
+
"outputs": [],
|
237 |
+
"source": [
|
238 |
+
"y = [4, 9, 7]\n",
|
239 |
+
"x + y\n"
|
240 |
+
]
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"cell_type": "code",
|
244 |
+
"execution_count": null,
|
245 |
+
"id": "b84f9d0e",
|
246 |
+
"metadata": {},
|
247 |
+
"outputs": [],
|
248 |
+
"source": [
|
249 |
+
"x[3]"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "markdown",
|
254 |
+
"id": "8f42ea1d",
|
255 |
+
"metadata": {},
|
256 |
+
"source": [
|
257 |
+
"The result may appear slightly counterintuitive: why did `Python` not add the entries of the lists\n",
|
258 |
+
"element-by-element? \n",
|
259 |
+
" In `Python`, lists hold *arbitrary* objects, and are added using *concatenation*. \n",
|
260 |
+
" In fact, concatenation is the behavior that we saw earlier when we entered `\"hello\" + \" \" + \"world\"`. \n",
|
261 |
+
" "
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "markdown",
|
266 |
+
"id": "69015df5",
|
267 |
+
"metadata": {},
|
268 |
+
"source": [
|
269 |
+
"This example reflects the fact that \n",
|
270 |
+
" `Python` is a general-purpose programming language. Much of `Python`'s data-specific\n",
|
271 |
+
"functionality comes from other packages, notably `numpy`\n",
|
272 |
+
"and `pandas`. \n",
|
273 |
+
"In the next section, we will introduce the `numpy` package. \n",
|
274 |
+
"See [docs.scipy.org/doc/numpy/user/quickstart.html](https://docs.scipy.org/doc/numpy/user/quickstart.html) for more information about `numpy`.\n"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "markdown",
|
279 |
+
"id": "16bfc4a2",
|
280 |
+
"metadata": {},
|
281 |
+
"source": [
|
282 |
+
"## Introduction to Numerical Python\n",
|
283 |
+
"\n",
|
284 |
+
"As mentioned earlier, this book makes use of functionality that is contained in the `numpy` \n",
|
285 |
+
" *library*, or *package*. A package is a collection of modules that are not necessarily included in \n",
|
286 |
+
" the base `Python` distribution. The name `numpy` is an abbreviation for *numerical Python*. "
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "markdown",
|
291 |
+
"id": "f5bed3f0",
|
292 |
+
"metadata": {},
|
293 |
+
"source": [
|
294 |
+
" To access `numpy`, we must first `import` it."
|
295 |
+
]
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "code",
|
299 |
+
"execution_count": null,
|
300 |
+
"id": "f1c7d1db",
|
301 |
+
"metadata": {
|
302 |
+
"execution": {},
|
303 |
+
"lines_to_next_cell": 0
|
304 |
+
},
|
305 |
+
"outputs": [],
|
306 |
+
"source": [
|
307 |
+
"import numpy as np "
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "markdown",
|
312 |
+
"id": "5c8614e7",
|
313 |
+
"metadata": {},
|
314 |
+
"source": [
|
315 |
+
"In the previous line, we named the `numpy` *module* `np`; an abbreviation for easier referencing."
|
316 |
+
]
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"cell_type": "markdown",
|
320 |
+
"id": "ba1224a6",
|
321 |
+
"metadata": {},
|
322 |
+
"source": [
|
323 |
+
"In `numpy`, an *array* is a generic term for a multidimensional\n",
|
324 |
+
"set of numbers.\n",
|
325 |
+
"We use the `np.array()` function to define `x` and `y`, which are one-dimensional arrays, i.e. vectors."
|
326 |
+
]
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"cell_type": "code",
|
330 |
+
"execution_count": null,
|
331 |
+
"id": "e2ea2bfd",
|
332 |
+
"metadata": {
|
333 |
+
"execution": {},
|
334 |
+
"lines_to_next_cell": 0
|
335 |
+
},
|
336 |
+
"outputs": [],
|
337 |
+
"source": [
|
338 |
+
"x = np.array([3, 4, 5])\n",
|
339 |
+
"y = np.array([4, 9, 7])"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "markdown",
|
344 |
+
"id": "a977e05a",
|
345 |
+
"metadata": {},
|
346 |
+
"source": [
|
347 |
+
"Note that if you forgot to run the `import numpy as np` command earlier, then\n",
|
348 |
+
"you will encounter an error in calling the `np.array()` function in the previous line. \n",
|
349 |
+
" The syntax `np.array()` indicates that the function being called\n",
|
350 |
+
"is part of the `numpy` package, which we have abbreviated as `np`. "
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "markdown",
|
355 |
+
"id": "742431b6",
|
356 |
+
"metadata": {},
|
357 |
+
"source": [
|
358 |
+
"Since `x` and `y` have been defined using `np.array()`, we get a sensible result when we add them together. Compare this to our results in the previous section,\n",
|
359 |
+
" when we tried to add two lists without using `numpy`. "
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "code",
|
364 |
+
"execution_count": null,
|
365 |
+
"id": "59fbf9fd",
|
366 |
+
"metadata": {
|
367 |
+
"execution": {},
|
368 |
+
"lines_to_next_cell": 0
|
369 |
+
},
|
370 |
+
"outputs": [],
|
371 |
+
"source": [
|
372 |
+
"x + y"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "markdown",
|
377 |
+
"id": "2ceccc2b",
|
378 |
+
"metadata": {},
|
379 |
+
"source": [
|
380 |
+
" \n",
|
381 |
+
" \n"
|
382 |
+
]
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"cell_type": "markdown",
|
386 |
+
"id": "74be6d74",
|
387 |
+
"metadata": {},
|
388 |
+
"source": [
|
389 |
+
"In `numpy`, matrices are typically represented as two-dimensional arrays, and vectors as one-dimensional arrays. {While it is also possible to create matrices using `np.matrix()`, we will use `np.array()` throughout the labs in this book.}\n",
|
390 |
+
"We can create a two-dimensional array as follows. "
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"cell_type": "code",
|
395 |
+
"execution_count": null,
|
396 |
+
"id": "2279437e",
|
397 |
+
"metadata": {
|
398 |
+
"execution": {},
|
399 |
+
"lines_to_next_cell": 0
|
400 |
+
},
|
401 |
+
"outputs": [],
|
402 |
+
"source": [
|
403 |
+
"x = np.array([[1, 2], [3, 4]])\n",
|
404 |
+
"x"
|
405 |
+
]
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"cell_type": "markdown",
|
409 |
+
"id": "f96f304d",
|
410 |
+
"metadata": {},
|
411 |
+
"source": [
|
412 |
+
" \n",
|
413 |
+
"\n"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "markdown",
|
418 |
+
"id": "f764f7d1",
|
419 |
+
"metadata": {},
|
420 |
+
"source": [
|
421 |
+
"The object `x` has several \n",
|
422 |
+
"*attributes*, or associated objects. To access an attribute of `x`, we type `x.attribute`, where we replace `attribute`\n",
|
423 |
+
"with the name of the attribute. \n",
|
424 |
+
"For instance, we can access the `ndim` attribute of `x` as follows. "
|
425 |
+
]
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"cell_type": "code",
|
429 |
+
"execution_count": null,
|
430 |
+
"id": "75bf1b1e",
|
431 |
+
"metadata": {
|
432 |
+
"execution": {}
|
433 |
+
},
|
434 |
+
"outputs": [],
|
435 |
+
"source": [
|
436 |
+
"x.ndim"
|
437 |
+
]
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"cell_type": "markdown",
|
441 |
+
"id": "4e3b83bf",
|
442 |
+
"metadata": {},
|
443 |
+
"source": [
|
444 |
+
"The output indicates that `x` is a two-dimensional array. \n",
|
445 |
+
"Similarly, `x.dtype` is the *data type* attribute of the object `x`. This indicates that `x` is \n",
|
446 |
+
"comprised of 64-bit integers:"
|
447 |
+
]
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"cell_type": "code",
|
451 |
+
"execution_count": null,
|
452 |
+
"id": "58292240",
|
453 |
+
"metadata": {
|
454 |
+
"execution": {},
|
455 |
+
"lines_to_next_cell": 0
|
456 |
+
},
|
457 |
+
"outputs": [],
|
458 |
+
"source": [
|
459 |
+
"x.dtype"
|
460 |
+
]
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"cell_type": "markdown",
|
464 |
+
"id": "cf9cf94b",
|
465 |
+
"metadata": {},
|
466 |
+
"source": [
|
467 |
+
"Why is `x` comprised of integers? This is because we created `x` by passing in exclusively integers to the `np.array()` function.\n",
|
468 |
+
" If\n",
|
469 |
+
"we had passed in any decimals, then we would have obtained an array of\n",
|
470 |
+
"*floating point numbers* (i.e. real-valued numbers). "
|
471 |
+
]
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"cell_type": "code",
|
475 |
+
"execution_count": null,
|
476 |
+
"id": "fc5fff57",
|
477 |
+
"metadata": {
|
478 |
+
"execution": {},
|
479 |
+
"lines_to_next_cell": 2
|
480 |
+
},
|
481 |
+
"outputs": [],
|
482 |
+
"source": [
|
483 |
+
"np.array([[1, 2], [3.0, 4]]).dtype\n"
|
484 |
+
]
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"cell_type": "markdown",
|
488 |
+
"id": "41a79641",
|
489 |
+
"metadata": {},
|
490 |
+
"source": [
|
491 |
+
"Typing `fun?` will cause `Python` to display \n",
|
492 |
+
"documentation associated with the function `fun`, if it exists.\n",
|
493 |
+
"We can try this for `np.array()`. "
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "code",
|
498 |
+
"execution_count": null,
|
499 |
+
"id": "762562a6",
|
500 |
+
"metadata": {
|
501 |
+
"execution": {},
|
502 |
+
"lines_to_next_cell": 0
|
503 |
+
},
|
504 |
+
"outputs": [],
|
505 |
+
"source": [
|
506 |
+
"np.array?\n"
|
507 |
+
]
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"cell_type": "markdown",
|
511 |
+
"id": "d4d82167",
|
512 |
+
"metadata": {},
|
513 |
+
"source": [
|
514 |
+
"This documentation indicates that we could create a floating point array by passing a `dtype` argument into `np.array()`."
|
515 |
+
]
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"cell_type": "code",
|
519 |
+
"execution_count": null,
|
520 |
+
"id": "66d2b82a",
|
521 |
+
"metadata": {
|
522 |
+
"execution": {},
|
523 |
+
"lines_to_next_cell": 2
|
524 |
+
},
|
525 |
+
"outputs": [],
|
526 |
+
"source": [
|
527 |
+
"np.array([[1, 2], [3, 4]], float).dtype\n"
|
528 |
+
]
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"cell_type": "markdown",
|
532 |
+
"id": "1e3ba5be",
|
533 |
+
"metadata": {},
|
534 |
+
"source": [
|
535 |
+
"The array `x` is two-dimensional. We can find out the number of rows and columns by looking\n",
|
536 |
+
"at its `shape` attribute."
|
537 |
+
]
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"cell_type": "code",
|
541 |
+
"execution_count": null,
|
542 |
+
"id": "89881402",
|
543 |
+
"metadata": {
|
544 |
+
"execution": {},
|
545 |
+
"lines_to_next_cell": 2
|
546 |
+
},
|
547 |
+
"outputs": [],
|
548 |
+
"source": [
|
549 |
+
"x.shape\n"
|
550 |
+
]
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"cell_type": "markdown",
|
554 |
+
"id": "2967b644",
|
555 |
+
"metadata": {},
|
556 |
+
"source": [
|
557 |
+
"A *method* is a function that is associated with an\n",
|
558 |
+
"object. \n",
|
559 |
+
"For instance, given an array `x`, the expression\n",
|
560 |
+
"`x.sum()` sums all of its elements, using the `sum()`\n",
|
561 |
+
"method for arrays. \n",
|
562 |
+
"The call `x.sum()` automatically provides `x` as the\n",
|
563 |
+
"first argument to its `sum()` method."
|
564 |
+
]
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"cell_type": "code",
|
568 |
+
"execution_count": null,
|
569 |
+
"id": "0572d3f6",
|
570 |
+
"metadata": {
|
571 |
+
"execution": {},
|
572 |
+
"lines_to_next_cell": 0
|
573 |
+
},
|
574 |
+
"outputs": [],
|
575 |
+
"source": [
|
576 |
+
"x = np.array([1, 2, 3, 4])\n",
|
577 |
+
"x.sum()"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "markdown",
|
582 |
+
"id": "e3f49995",
|
583 |
+
"metadata": {},
|
584 |
+
"source": [
|
585 |
+
"We could also sum the elements of `x` by passing in `x` as an argument to the `np.sum()` function. "
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"cell_type": "code",
|
590 |
+
"execution_count": null,
|
591 |
+
"id": "33b10a6f",
|
592 |
+
"metadata": {
|
593 |
+
"execution": {},
|
594 |
+
"lines_to_next_cell": 0
|
595 |
+
},
|
596 |
+
"outputs": [],
|
597 |
+
"source": [
|
598 |
+
"x = np.array([1, 2, 3, 4])\n",
|
599 |
+
"np.sum(x)"
|
600 |
+
]
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"cell_type": "markdown",
|
604 |
+
"id": "2f3dd2c3",
|
605 |
+
"metadata": {},
|
606 |
+
"source": [
|
607 |
+
" As another example, the\n",
|
608 |
+
"`reshape()` method returns a new array with the same elements as\n",
|
609 |
+
"`x`, but a different shape.\n",
|
610 |
+
" We do this by passing in a `tuple` in our call to\n",
|
611 |
+
" `reshape()`, in this case `(2, 3)`. This tuple specifies that we would like to create a two-dimensional array with \n",
|
612 |
+
"$2$ rows and $3$ columns. {Like lists, tuples represent a sequence of objects. Why do we need more than one way to create a sequence? There are a few differences between tuples and lists, but perhaps the most important is that elements of a tuple cannot be modified, whereas elements of a list can be.}\n",
|
613 |
+
" \n",
|
614 |
+
"In what follows, the\n",
|
615 |
+
"`\\n` character creates a *new line*."
|
616 |
+
]
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"cell_type": "code",
|
620 |
+
"execution_count": null,
|
621 |
+
"id": "a32716db",
|
622 |
+
"metadata": {
|
623 |
+
"execution": {}
|
624 |
+
},
|
625 |
+
"outputs": [],
|
626 |
+
"source": [
|
627 |
+
"x = np.array([1, 2, 3, 4, 5, 6])\n",
|
628 |
+
"print('beginning x:\\n', x)\n",
|
629 |
+
"x_reshape = x.reshape((2, 3))\n",
|
630 |
+
"print('reshaped x:\\n', x_reshape)\n"
|
631 |
+
]
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"cell_type": "markdown",
|
635 |
+
"id": "2483179e",
|
636 |
+
"metadata": {},
|
637 |
+
"source": [
|
638 |
+
"The previous output reveals that `numpy` arrays are specified as a sequence\n",
|
639 |
+
"of *rows*. This is called *row-major ordering*, as opposed to *column-major ordering*. "
|
640 |
+
]
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"cell_type": "markdown",
|
644 |
+
"id": "e256575f",
|
645 |
+
"metadata": {},
|
646 |
+
"source": [
|
647 |
+
"`Python` (and hence `numpy`) uses 0-based\n",
|
648 |
+
"indexing. This means that to access the top left element of `x_reshape`, \n",
|
649 |
+
"we type in `x_reshape[0,0]`."
|
650 |
+
]
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"cell_type": "code",
|
654 |
+
"execution_count": null,
|
655 |
+
"id": "3db6e1cf",
|
656 |
+
"metadata": {
|
657 |
+
"execution": {},
|
658 |
+
"lines_to_next_cell": 0
|
659 |
+
},
|
660 |
+
"outputs": [],
|
661 |
+
"source": [
|
662 |
+
"x_reshape[0, 0] "
|
663 |
+
]
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"cell_type": "markdown",
|
667 |
+
"id": "0e10119e",
|
668 |
+
"metadata": {},
|
669 |
+
"source": [
|
670 |
+
"Similarly, `x_reshape[1,2]` yields the element in the second row and the third column \n",
|
671 |
+
"of `x_reshape`. "
|
672 |
+
]
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"cell_type": "code",
|
676 |
+
"execution_count": null,
|
677 |
+
"id": "e15c753f",
|
678 |
+
"metadata": {
|
679 |
+
"execution": {},
|
680 |
+
"lines_to_next_cell": 0
|
681 |
+
},
|
682 |
+
"outputs": [],
|
683 |
+
"source": [
|
684 |
+
"x_reshape[1, 2] "
|
685 |
+
]
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"cell_type": "markdown",
|
689 |
+
"id": "f9c55622",
|
690 |
+
"metadata": {},
|
691 |
+
"source": [
|
692 |
+
"Similarly, `x[2]` yields the\n",
|
693 |
+
"third entry of `x`. \n",
|
694 |
+
"\n",
|
695 |
+
"Now, let's modify the top left element of `x_reshape`. To our surprise, we discover that the first element of `x` has been modified as well!\n",
|
696 |
+
"\n"
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"cell_type": "code",
|
701 |
+
"execution_count": null,
|
702 |
+
"id": "91c6e7d8",
|
703 |
+
"metadata": {
|
704 |
+
"execution": {}
|
705 |
+
},
|
706 |
+
"outputs": [],
|
707 |
+
"source": [
|
708 |
+
"print('x before we modify x_reshape:\\n', x)\n",
|
709 |
+
"print('x_reshape before we modify x_reshape:\\n', x_reshape)\n",
|
710 |
+
"x_reshape[0, 0] = 5\n",
|
711 |
+
"print('x_reshape after we modify its top left element:\\n', x_reshape)\n",
|
712 |
+
"print('x after we modify top left element of x_reshape:\\n', x)\n"
|
713 |
+
]
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"cell_type": "markdown",
|
717 |
+
"id": "8a840507",
|
718 |
+
"metadata": {},
|
719 |
+
"source": [
|
720 |
+
"Modifying `x_reshape` also modified `x` because the two objects occupy the same space in memory.\n",
|
721 |
+
" \n",
|
722 |
+
"\n",
|
723 |
+
" "
|
724 |
+
]
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"cell_type": "markdown",
|
728 |
+
"id": "ec551f3e",
|
729 |
+
"metadata": {},
|
730 |
+
"source": [
|
731 |
+
"We just saw that we can modify an element of an array. Can we also modify a tuple? It turns out that we cannot --- and trying to do so introduces\n",
|
732 |
+
"an *exception*, or error."
|
733 |
+
]
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"cell_type": "code",
|
737 |
+
"execution_count": null,
|
738 |
+
"id": "59d95dce",
|
739 |
+
"metadata": {
|
740 |
+
"execution": {},
|
741 |
+
"lines_to_next_cell": 2
|
742 |
+
},
|
743 |
+
"outputs": [],
|
744 |
+
"source": [
|
745 |
+
"my_tuple = (3, 4, 5)\n",
|
746 |
+
"my_tuple[0] = 2\n"
|
747 |
+
]
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"cell_type": "markdown",
|
751 |
+
"id": "d594f1af",
|
752 |
+
"metadata": {},
|
753 |
+
"source": [
|
754 |
+
"We now briefly mention some attributes of arrays that will come in handy. An array's `shape` attribute contains its dimension; this is always a tuple.\n",
|
755 |
+
"The `ndim` attribute yields the number of dimensions, and `T` provides its transpose. "
|
756 |
+
]
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"cell_type": "code",
|
760 |
+
"execution_count": null,
|
761 |
+
"id": "a6fde9af",
|
762 |
+
"metadata": {
|
763 |
+
"execution": {}
|
764 |
+
},
|
765 |
+
"outputs": [],
|
766 |
+
"source": [
|
767 |
+
"x_reshape.shape, x_reshape.ndim, x_reshape.T\n"
|
768 |
+
]
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"cell_type": "markdown",
|
772 |
+
"id": "76d20b98",
|
773 |
+
"metadata": {},
|
774 |
+
"source": [
|
775 |
+
"Notice that the three individual outputs `(2,3)`, `2`, and `array([[5, 4],[2, 5], [3,6]])` are themselves output as a tuple. \n",
|
776 |
+
" \n",
|
777 |
+
"We will often want to apply functions to arrays. \n",
|
778 |
+
"For instance, we can compute the\n",
|
779 |
+
"square root of the entries using the `np.sqrt()` function: "
|
780 |
+
]
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"execution_count": null,
|
785 |
+
"id": "fadb6b45",
|
786 |
+
"metadata": {
|
787 |
+
"execution": {}
|
788 |
+
},
|
789 |
+
"outputs": [],
|
790 |
+
"source": [
|
791 |
+
"np.sqrt(x)\n"
|
792 |
+
]
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"cell_type": "markdown",
|
796 |
+
"id": "22fab2ce",
|
797 |
+
"metadata": {},
|
798 |
+
"source": [
|
799 |
+
"We can also square the elements:"
|
800 |
+
]
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"cell_type": "code",
|
804 |
+
"execution_count": null,
|
805 |
+
"id": "fda3134b",
|
806 |
+
"metadata": {
|
807 |
+
"execution": {}
|
808 |
+
},
|
809 |
+
"outputs": [],
|
810 |
+
"source": [
|
811 |
+
"x**2\n"
|
812 |
+
]
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"cell_type": "markdown",
|
816 |
+
"id": "1278f26b",
|
817 |
+
"metadata": {},
|
818 |
+
"source": [
|
819 |
+
"We can compute the square roots using the same notation, raising to the power of $1/2$ instead of 2."
|
820 |
+
]
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"cell_type": "code",
|
824 |
+
"execution_count": null,
|
825 |
+
"id": "52eb335b",
|
826 |
+
"metadata": {
|
827 |
+
"execution": {},
|
828 |
+
"lines_to_next_cell": 2
|
829 |
+
},
|
830 |
+
"outputs": [],
|
831 |
+
"source": [
|
832 |
+
"x**0.5\n"
|
833 |
+
]
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"cell_type": "markdown",
|
837 |
+
"id": "299a5a85",
|
838 |
+
"metadata": {},
|
839 |
+
"source": [
|
840 |
+
"Throughout this book, we will often want to generate random data. \n",
|
841 |
+
"The `np.random.normal()` function generates a vector of random\n",
|
842 |
+
"normal variables. We can learn more about this function by looking at the help page, via a call to `np.random.normal?`.\n",
|
843 |
+
"The first line of the help page reads `normal(loc=0.0, scale=1.0, size=None)`. \n",
|
844 |
+
" This *signature* line tells us that the function's arguments are `loc`, `scale`, and `size`. These are *keyword* arguments, which means that when they are passed into\n",
|
845 |
+
" the function, they can be referred to by name (in any order). {`Python` also uses *positional* arguments. Positional arguments do not need to use a keyword. To see an example, type in `np.sum?`. We see that `a` is a positional argument, i.e. this function assumes that the first unnamed argument that it receives is the array to be summed. By contrast, `axis` and `dtype` are keyword arguments: the position in which these arguments are entered into `np.sum()` does not matter.}\n",
|
846 |
+
" By default, this function will generate random normal variable(s) with mean (`loc`) $0$ and standard deviation (`scale`) $1$; furthermore, \n",
|
847 |
+
" a single random variable will be generated unless the argument to `size` is changed. \n",
|
848 |
+
"\n",
|
849 |
+
"We now generate 50 independent random variables from a $N(0,1)$ distribution. "
|
850 |
+
]
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"cell_type": "code",
|
854 |
+
"execution_count": null,
|
855 |
+
"id": "ac5e9d29",
|
856 |
+
"metadata": {
|
857 |
+
"execution": {}
|
858 |
+
},
|
859 |
+
"outputs": [],
|
860 |
+
"source": [
|
861 |
+
"x = np.random.normal(size=50)\n",
|
862 |
+
"x\n"
|
863 |
+
]
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"cell_type": "markdown",
|
867 |
+
"id": "d77cf45a",
|
868 |
+
"metadata": {},
|
869 |
+
"source": [
|
870 |
+
"We create an array `y` by adding an independent $N(50,1)$ random variable to each element of `x`."
|
871 |
+
]
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"cell_type": "code",
|
875 |
+
"execution_count": null,
|
876 |
+
"id": "55fa905e",
|
877 |
+
"metadata": {
|
878 |
+
"execution": {},
|
879 |
+
"lines_to_next_cell": 0
|
880 |
+
},
|
881 |
+
"outputs": [],
|
882 |
+
"source": [
|
883 |
+
"y = x + np.random.normal(loc=50, scale=1, size=50)"
|
884 |
+
]
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"cell_type": "markdown",
|
888 |
+
"id": "eacfecc9",
|
889 |
+
"metadata": {},
|
890 |
+
"source": [
|
891 |
+
"The `np.corrcoef()` function computes the correlation matrix between `x` and `y`. The off-diagonal elements give the \n",
|
892 |
+
"correlation between `x` and `y`. "
|
893 |
+
]
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"cell_type": "code",
|
897 |
+
"execution_count": null,
|
898 |
+
"id": "fde0dc19",
|
899 |
+
"metadata": {
|
900 |
+
"execution": {}
|
901 |
+
},
|
902 |
+
"outputs": [],
|
903 |
+
"source": [
|
904 |
+
"np.corrcoef(x, y)"
|
905 |
+
]
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"cell_type": "markdown",
|
909 |
+
"id": "8a594218",
|
910 |
+
"metadata": {},
|
911 |
+
"source": [
|
912 |
+
"If you're following along in your own `Jupyter` notebook, then you probably noticed that you got a different set of results when you ran the past few \n",
|
913 |
+
"commands. In particular, \n",
|
914 |
+
" each\n",
|
915 |
+
"time we call `np.random.normal()`, we will get a different answer, as shown in the following example."
|
916 |
+
]
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"cell_type": "code",
|
920 |
+
"execution_count": null,
|
921 |
+
"id": "5099cf54",
|
922 |
+
"metadata": {
|
923 |
+
"execution": {},
|
924 |
+
"lines_to_next_cell": 0
|
925 |
+
},
|
926 |
+
"outputs": [],
|
927 |
+
"source": [
|
928 |
+
"print(np.random.normal(scale=5, size=2))\n",
|
929 |
+
"print(np.random.normal(scale=5, size=2)) \n"
|
930 |
+
]
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"cell_type": "markdown",
|
934 |
+
"id": "2e209118",
|
935 |
+
"metadata": {},
|
936 |
+
"source": [
|
937 |
+
" "
|
938 |
+
]
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"cell_type": "markdown",
|
942 |
+
"id": "ed7697a4",
|
943 |
+
"metadata": {},
|
944 |
+
"source": [
|
945 |
+
"In order to ensure that our code provides exactly the same results\n",
|
946 |
+
"each time it is run, we can set a *random seed* \n",
|
947 |
+
"using the \n",
|
948 |
+
"`np.random.default_rng()` function.\n",
|
949 |
+
"This function takes an arbitrary, user-specified integer argument. If we set a random seed before \n",
|
950 |
+
"generating random data, then re-running our code will yield the same results. The\n",
|
951 |
+
"object `rng` has essentially all the random number generating methods found in `np.random`. Hence, to\n",
|
952 |
+
"generate normal data we use `rng.normal()`."
|
953 |
+
]
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"cell_type": "code",
|
957 |
+
"execution_count": null,
|
958 |
+
"id": "9d8074e5",
|
959 |
+
"metadata": {
|
960 |
+
"execution": {}
|
961 |
+
},
|
962 |
+
"outputs": [],
|
963 |
+
"source": [
|
964 |
+
"rng = np.random.default_rng(1303)\n",
|
965 |
+
"print(rng.normal(scale=5, size=2))\n",
|
966 |
+
"rng2 = np.random.default_rng(1303)\n",
|
967 |
+
"print(rng2.normal(scale=5, size=2)) "
|
968 |
+
]
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"cell_type": "markdown",
|
972 |
+
"id": "93f826ef",
|
973 |
+
"metadata": {},
|
974 |
+
"source": [
|
975 |
+
"Throughout the labs in this book, we use `np.random.default_rng()` whenever we\n",
|
976 |
+
"perform calculations involving random quantities within `numpy`. In principle, this\n",
|
977 |
+
"should enable the reader to exactly reproduce the stated results. However, as new versions of `numpy` become available, it is possible\n",
|
978 |
+
"that some small discrepancies may occur between the output\n",
|
979 |
+
"in the labs and the output\n",
|
980 |
+
"from `numpy`.\n",
|
981 |
+
"\n",
|
982 |
+
"The `np.mean()`, `np.var()`, and `np.std()` functions can be used\n",
|
983 |
+
"to compute the mean, variance, and standard deviation of arrays. These functions are also\n",
|
984 |
+
"available as methods on the arrays."
|
985 |
+
]
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"cell_type": "code",
|
989 |
+
"execution_count": null,
|
990 |
+
"id": "e98472df",
|
991 |
+
"metadata": {
|
992 |
+
"execution": {},
|
993 |
+
"lines_to_next_cell": 0
|
994 |
+
},
|
995 |
+
"outputs": [],
|
996 |
+
"source": [
|
997 |
+
"rng = np.random.default_rng(3)\n",
|
998 |
+
"y = rng.standard_normal(10)\n",
|
999 |
+
"np.mean(y), y.mean()"
|
1000 |
+
]
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"cell_type": "markdown",
|
1004 |
+
"id": "2870d61f",
|
1005 |
+
"metadata": {},
|
1006 |
+
"source": [
|
1007 |
+
" \n"
|
1008 |
+
]
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"cell_type": "code",
|
1012 |
+
"execution_count": null,
|
1013 |
+
"id": "8c2784fd",
|
1014 |
+
"metadata": {
|
1015 |
+
"execution": {},
|
1016 |
+
"lines_to_next_cell": 2
|
1017 |
+
},
|
1018 |
+
"outputs": [],
|
1019 |
+
"source": [
|
1020 |
+
"np.var(y), y.var(), np.mean((y - y.mean())**2)"
|
1021 |
+
]
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"cell_type": "markdown",
|
1025 |
+
"id": "86261a69",
|
1026 |
+
"metadata": {},
|
1027 |
+
"source": [
|
1028 |
+
"Notice that by default `np.var()` divides by the sample size $n$ rather\n",
|
1029 |
+
"than $n-1$; see the `ddof` argument in `np.var?`.\n"
|
1030 |
+
]
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"cell_type": "code",
|
1034 |
+
"execution_count": null,
|
1035 |
+
"id": "7e7205f2",
|
1036 |
+
"metadata": {
|
1037 |
+
"execution": {}
|
1038 |
+
},
|
1039 |
+
"outputs": [],
|
1040 |
+
"source": [
|
1041 |
+
"np.sqrt(np.var(y)), np.std(y)"
|
1042 |
+
]
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"cell_type": "markdown",
|
1046 |
+
"id": "d4faf901",
|
1047 |
+
"metadata": {},
|
1048 |
+
"source": [
|
1049 |
+
"The `np.mean()`, `np.var()`, and `np.std()` functions can also be applied to the rows and columns of a matrix. \n",
|
1050 |
+
"To see this, we construct a $10 \\times 3$ matrix of $N(0,1)$ random variables, and consider computing its row sums. "
|
1051 |
+
]
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"cell_type": "code",
|
1055 |
+
"execution_count": null,
|
1056 |
+
"id": "fce06849",
|
1057 |
+
"metadata": {
|
1058 |
+
"execution": {}
|
1059 |
+
},
|
1060 |
+
"outputs": [],
|
1061 |
+
"source": [
|
1062 |
+
"X = rng.standard_normal((10, 3))\n",
|
1063 |
+
"X"
|
1064 |
+
]
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"cell_type": "markdown",
|
1068 |
+
"id": "6cc355d2",
|
1069 |
+
"metadata": {},
|
1070 |
+
"source": [
|
1071 |
+
"Since arrays are row-major ordered, the first axis, i.e. `axis=0`, refers to its rows. We pass this argument into the `mean()` method for the object `X`. "
|
1072 |
+
]
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"cell_type": "code",
|
1076 |
+
"execution_count": null,
|
1077 |
+
"id": "1403ff7a",
|
1078 |
+
"metadata": {
|
1079 |
+
"execution": {}
|
1080 |
+
},
|
1081 |
+
"outputs": [],
|
1082 |
+
"source": [
|
1083 |
+
"X.mean(axis=0)"
|
1084 |
+
]
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"cell_type": "markdown",
|
1088 |
+
"id": "6785c0ec",
|
1089 |
+
"metadata": {},
|
1090 |
+
"source": [
|
1091 |
+
"The following yields the same result."
|
1092 |
+
]
|
1093 |
+
},
|
1094 |
+
{
|
1095 |
+
"cell_type": "code",
|
1096 |
+
"execution_count": null,
|
1097 |
+
"id": "7e9255ba",
|
1098 |
+
"metadata": {
|
1099 |
+
"execution": {},
|
1100 |
+
"lines_to_next_cell": 0
|
1101 |
+
},
|
1102 |
+
"outputs": [],
|
1103 |
+
"source": [
|
1104 |
+
"X.mean(0)"
|
1105 |
+
]
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"cell_type": "markdown",
|
1109 |
+
"id": "5de246dc",
|
1110 |
+
"metadata": {},
|
1111 |
+
"source": [
|
1112 |
+
" "
|
1113 |
+
]
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"cell_type": "markdown",
|
1117 |
+
"id": "30b002fa",
|
1118 |
+
"metadata": {},
|
1119 |
+
"source": [
|
1120 |
+
"## Graphics\n",
|
1121 |
+
"In `Python`, common practice is to use the library\n",
|
1122 |
+
"`matplotlib` for graphics.\n",
|
1123 |
+
"However, since `Python` was not written with data analysis in mind,\n",
|
1124 |
+
" the notion of plotting is not intrinsic to the language. \n",
|
1125 |
+
"We will use the `subplots()` function\n",
|
1126 |
+
"from `matplotlib.pyplot` to create a figure and the\n",
|
1127 |
+
"axes onto which we plot our data.\n",
|
1128 |
+
"For many more examples of how to make plots in `Python`,\n",
|
1129 |
+
"readers are encouraged to visit [matplotlib.org/stable/gallery/](https://matplotlib.org/stable/gallery/index.html).\n",
|
1130 |
+
"\n",
|
1131 |
+
"In `matplotlib`, a plot consists of a *figure* and one or more *axes*. You can think of the figure as the blank canvas upon which \n",
|
1132 |
+
"one or more plots will be displayed: it is the entire plotting window. \n",
|
1133 |
+
"The *axes* contain important information about each plot, such as its $x$- and $y$-axis labels,\n",
|
1134 |
+
"title, and more. (Note that in `matplotlib`, the word *axes* is not the plural of *axis*: a plot's *axes* contains much more information \n",
|
1135 |
+
"than just the $x$-axis and the $y$-axis.)\n",
|
1136 |
+
"\n",
|
1137 |
+
"We begin by importing the `subplots()` function\n",
|
1138 |
+
"from `matplotlib`. We use this function\n",
|
1139 |
+
"throughout when creating figures.\n",
|
1140 |
+
"The function returns a tuple of length two: a figure\n",
|
1141 |
+
"object as well as the relevant axes object. We will typically\n",
|
1142 |
+
"pass `figsize` as a keyword argument.\n",
|
1143 |
+
"Having created our axes, we attempt our first plot using its `plot()` method.\n",
|
1144 |
+
"To learn more about it, \n",
|
1145 |
+
"type `ax.plot?`."
|
1146 |
+
]
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"cell_type": "code",
|
1150 |
+
"execution_count": null,
|
1151 |
+
"id": "8236e5f7",
|
1152 |
+
"metadata": {
|
1153 |
+
"execution": {}
|
1154 |
+
},
|
1155 |
+
"outputs": [],
|
1156 |
+
"source": [
|
1157 |
+
"from matplotlib.pyplot import subplots\n",
|
1158 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
1159 |
+
"x = rng.standard_normal(100)\n",
|
1160 |
+
"y = rng.standard_normal(100)\n",
|
1161 |
+
"ax.plot(x, y);\n"
|
1162 |
+
]
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"cell_type": "markdown",
|
1166 |
+
"id": "bbef67e6",
|
1167 |
+
"metadata": {},
|
1168 |
+
"source": [
|
1169 |
+
"We pause here to note that we have *unpacked* the tuple of length two returned by `subplots()` into the two distinct\n",
|
1170 |
+
"variables `fig` and `ax`. Unpacking\n",
|
1171 |
+
"is typically preferred to the following equivalent but slightly more verbose code:"
|
1172 |
+
]
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"cell_type": "code",
|
1176 |
+
"execution_count": null,
|
1177 |
+
"id": "ddc9ed4f",
|
1178 |
+
"metadata": {
|
1179 |
+
"execution": {}
|
1180 |
+
},
|
1181 |
+
"outputs": [],
|
1182 |
+
"source": [
|
1183 |
+
"output = subplots(figsize=(8, 8))\n",
|
1184 |
+
"fig = output[0]\n",
|
1185 |
+
"ax = output[1]"
|
1186 |
+
]
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"cell_type": "markdown",
|
1190 |
+
"id": "104d6b8f",
|
1191 |
+
"metadata": {},
|
1192 |
+
"source": [
|
1193 |
+
"We see that our earlier cell produced a line plot, which is the default. To create a scatterplot, we provide an additional argument to `ax.plot()`, indicating that circles should be displayed."
|
1194 |
+
]
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"cell_type": "code",
|
1198 |
+
"execution_count": null,
|
1199 |
+
"id": "c64ed600",
|
1200 |
+
"metadata": {
|
1201 |
+
"execution": {},
|
1202 |
+
"lines_to_next_cell": 0
|
1203 |
+
},
|
1204 |
+
"outputs": [],
|
1205 |
+
"source": [
|
1206 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
1207 |
+
"ax.plot(x, y, 'o');"
|
1208 |
+
]
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"cell_type": "markdown",
|
1212 |
+
"id": "840be2a9",
|
1213 |
+
"metadata": {},
|
1214 |
+
"source": [
|
1215 |
+
"Different values\n",
|
1216 |
+
"of this additional argument can be used to produce different colored lines\n",
|
1217 |
+
"as well as different linestyles. \n"
|
1218 |
+
]
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"cell_type": "markdown",
|
1222 |
+
"id": "971b98bd",
|
1223 |
+
"metadata": {},
|
1224 |
+
"source": [
|
1225 |
+
"As an alternative, we could use the `ax.scatter()` function to create a scatterplot."
|
1226 |
+
]
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"cell_type": "code",
|
1230 |
+
"execution_count": null,
|
1231 |
+
"id": "bc6245e2",
|
1232 |
+
"metadata": {
|
1233 |
+
"execution": {}
|
1234 |
+
},
|
1235 |
+
"outputs": [],
|
1236 |
+
"source": [
|
1237 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
1238 |
+
"ax.scatter(x, y, marker='o');"
|
1239 |
+
]
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"cell_type": "markdown",
|
1243 |
+
"id": "97f36df0",
|
1244 |
+
"metadata": {},
|
1245 |
+
"source": [
|
1246 |
+
"Notice that in the code blocks above, we have ended\n",
|
1247 |
+
"the last line with a semicolon. This prevents `ax.plot(x, y)` from printing\n",
|
1248 |
+
"text to the notebook. However, it does not prevent a plot from being produced. \n",
|
1249 |
+
" If we omit the trailing semi-colon, then we obtain the following output: "
|
1250 |
+
]
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"cell_type": "code",
|
1254 |
+
"execution_count": null,
|
1255 |
+
"id": "2454807b",
|
1256 |
+
"metadata": {
|
1257 |
+
"execution": {},
|
1258 |
+
"lines_to_next_cell": 0
|
1259 |
+
},
|
1260 |
+
"outputs": [],
|
1261 |
+
"source": [
|
1262 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
1263 |
+
"ax.scatter(x, y, marker='o')\n"
|
1264 |
+
]
|
1265 |
+
},
|
1266 |
+
{
|
1267 |
+
"cell_type": "markdown",
|
1268 |
+
"id": "1230c0a6",
|
1269 |
+
"metadata": {},
|
1270 |
+
"source": [
|
1271 |
+
"In what follows, we will use\n",
|
1272 |
+
" trailing semicolons whenever the text that would be output is not\n",
|
1273 |
+
"germane to the discussion at hand.\n",
|
1274 |
+
"\n",
|
1275 |
+
"\n",
|
1276 |
+
"\n"
|
1277 |
+
]
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"cell_type": "markdown",
|
1281 |
+
"id": "0ccb9964",
|
1282 |
+
"metadata": {},
|
1283 |
+
"source": [
|
1284 |
+
"To label our plot, we make use of the `set_xlabel()`, `set_ylabel()`, and `set_title()` methods\n",
|
1285 |
+
"of `ax`.\n",
|
1286 |
+
" "
|
1287 |
+
]
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"cell_type": "code",
|
1291 |
+
"execution_count": null,
|
1292 |
+
"id": "1e18a793",
|
1293 |
+
"metadata": {
|
1294 |
+
"execution": {}
|
1295 |
+
},
|
1296 |
+
"outputs": [],
|
1297 |
+
"source": [
|
1298 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
1299 |
+
"ax.scatter(x, y, marker='o')\n",
|
1300 |
+
"ax.set_xlabel(\"this is the x-axis\")\n",
|
1301 |
+
"ax.set_ylabel(\"this is the y-axis\")\n",
|
1302 |
+
"ax.set_title(\"Plot of X vs Y\");"
|
1303 |
+
]
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"cell_type": "markdown",
|
1307 |
+
"id": "f2d818ee",
|
1308 |
+
"metadata": {},
|
1309 |
+
"source": [
|
1310 |
+
" Having access to the figure object `fig` itself means that we can go in and change some aspects and then redisplay it. Here, we change\n",
|
1311 |
+
" the size from `(8, 8)` to `(12, 3)`.\n"
|
1312 |
+
]
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"cell_type": "code",
|
1316 |
+
"execution_count": null,
|
1317 |
+
"id": "aec3f009",
|
1318 |
+
"metadata": {
|
1319 |
+
"execution": {},
|
1320 |
+
"lines_to_next_cell": 0
|
1321 |
+
},
|
1322 |
+
"outputs": [],
|
1323 |
+
"source": [
|
1324 |
+
"fig.set_size_inches(12,3)\n",
|
1325 |
+
"fig"
|
1326 |
+
]
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"cell_type": "markdown",
|
1330 |
+
"id": "dee531cc",
|
1331 |
+
"metadata": {},
|
1332 |
+
"source": [
|
1333 |
+
" "
|
1334 |
+
]
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"cell_type": "markdown",
|
1338 |
+
"id": "011bf802",
|
1339 |
+
"metadata": {},
|
1340 |
+
"source": [
|
1341 |
+
"Occasionally we will want to create several plots within a figure. This can be\n",
|
1342 |
+
"achieved by passing additional arguments to `subplots()`. \n",
|
1343 |
+
"Below, we create a $2 \\times 3$ grid of plots\n",
|
1344 |
+
"in a figure of size determined by the `figsize` argument. In such\n",
|
1345 |
+
"situations, there is often a relationship between the axes in the plots. For example,\n",
|
1346 |
+
"all plots may have a common $x$-axis. The `subplots()` function can automatically handle\n",
|
1347 |
+
"this situation when passed the keyword argument `sharex=True`.\n",
|
1348 |
+
"The `axes` object below is an array pointing to different plots in the figure. "
|
1349 |
+
]
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"cell_type": "code",
|
1353 |
+
"execution_count": null,
|
1354 |
+
"id": "2cbc7fd4",
|
1355 |
+
"metadata": {
|
1356 |
+
"execution": {},
|
1357 |
+
"lines_to_next_cell": 0
|
1358 |
+
},
|
1359 |
+
"outputs": [],
|
1360 |
+
"source": [
|
1361 |
+
"fig, axes = subplots(nrows=2,\n",
|
1362 |
+
" ncols=3,\n",
|
1363 |
+
" figsize=(15, 5))"
|
1364 |
+
]
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"cell_type": "markdown",
|
1368 |
+
"id": "b8ff2e6d",
|
1369 |
+
"metadata": {},
|
1370 |
+
"source": [
|
1371 |
+
"We now produce a scatter plot with `'o'` in the second column of the first row and\n",
|
1372 |
+
"a scatter plot with `'+'` in the third column of the second row."
|
1373 |
+
]
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"cell_type": "code",
|
1377 |
+
"execution_count": null,
|
1378 |
+
"id": "702f80d9",
|
1379 |
+
"metadata": {
|
1380 |
+
"execution": {},
|
1381 |
+
"lines_to_next_cell": 0
|
1382 |
+
},
|
1383 |
+
"outputs": [],
|
1384 |
+
"source": [
|
1385 |
+
"axes[0,1].plot(x, y, 'o')\n",
|
1386 |
+
"axes[1,2].scatter(x, y, marker='+')\n",
|
1387 |
+
"fig"
|
1388 |
+
]
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"cell_type": "markdown",
|
1392 |
+
"id": "5b265f8b",
|
1393 |
+
"metadata": {},
|
1394 |
+
"source": [
|
1395 |
+
"Type `subplots?` to learn more about \n",
|
1396 |
+
"`subplots()`. \n",
|
1397 |
+
"\n",
|
1398 |
+
"\n"
|
1399 |
+
]
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"cell_type": "markdown",
|
1403 |
+
"id": "1bd7e707",
|
1404 |
+
"metadata": {},
|
1405 |
+
"source": [
|
1406 |
+
"To save the output of `fig`, we call its `savefig()`\n",
|
1407 |
+
"method. The argument `dpi` is the dots per inch, used\n",
|
1408 |
+
"to determine how large the figure will be in pixels."
|
1409 |
+
]
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"cell_type": "code",
|
1413 |
+
"execution_count": null,
|
1414 |
+
"id": "5493d229",
|
1415 |
+
"metadata": {
|
1416 |
+
"execution": {},
|
1417 |
+
"lines_to_next_cell": 2
|
1418 |
+
},
|
1419 |
+
"outputs": [],
|
1420 |
+
"source": [
|
1421 |
+
"fig.savefig(\"Figure.png\", dpi=400)\n",
|
1422 |
+
"fig.savefig(\"Figure.pdf\", dpi=200);\n"
|
1423 |
+
]
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"cell_type": "markdown",
|
1427 |
+
"id": "7152d0c7",
|
1428 |
+
"metadata": {},
|
1429 |
+
"source": [
|
1430 |
+
"We can continue to modify `fig` using step-by-step updates; for example, we can modify the range of the $x$-axis, re-save the figure, and even re-display it. "
|
1431 |
+
]
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"cell_type": "code",
|
1435 |
+
"execution_count": null,
|
1436 |
+
"id": "bd07af12",
|
1437 |
+
"metadata": {
|
1438 |
+
"execution": {}
|
1439 |
+
},
|
1440 |
+
"outputs": [],
|
1441 |
+
"source": [
|
1442 |
+
"axes[0,1].set_xlim([-1,1])\n",
|
1443 |
+
"fig.savefig(\"Figure_updated.jpg\")\n",
|
1444 |
+
"fig"
|
1445 |
+
]
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"cell_type": "markdown",
|
1449 |
+
"id": "b5278857",
|
1450 |
+
"metadata": {},
|
1451 |
+
"source": [
|
1452 |
+
"We now create some more sophisticated plots. The \n",
|
1453 |
+
"`ax.contour()` method produces a *contour plot* \n",
|
1454 |
+
"in order to represent three-dimensional data, similar to a\n",
|
1455 |
+
"topographical map. It takes three arguments:\n",
|
1456 |
+
"\n",
|
1457 |
+
"* A vector of `x` values (the first dimension),\n",
|
1458 |
+
"* A vector of `y` values (the second dimension), and\n",
|
1459 |
+
"* A matrix whose elements correspond to the `z` value (the third\n",
|
1460 |
+
"dimension) for each pair of `(x,y)` coordinates.\n",
|
1461 |
+
"\n",
|
1462 |
+
"To create `x` and `y`, we’ll use the command `np.linspace(a, b, n)`, \n",
|
1463 |
+
"which returns a vector of `n` numbers starting at `a` and ending at `b`."
|
1464 |
+
]
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"cell_type": "code",
|
1468 |
+
"execution_count": null,
|
1469 |
+
"id": "01019508",
|
1470 |
+
"metadata": {
|
1471 |
+
"execution": {},
|
1472 |
+
"lines_to_next_cell": 0
|
1473 |
+
},
|
1474 |
+
"outputs": [],
|
1475 |
+
"source": [
|
1476 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
1477 |
+
"x = np.linspace(-np.pi, np.pi, 50)\n",
|
1478 |
+
"y = x\n",
|
1479 |
+
"f = np.multiply.outer(np.cos(y), 1 / (1 + x**2))\n",
|
1480 |
+
"ax.contour(x, y, f);\n"
|
1481 |
+
]
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"cell_type": "markdown",
|
1485 |
+
"id": "9ef3c475",
|
1486 |
+
"metadata": {},
|
1487 |
+
"source": [
|
1488 |
+
"We can increase the resolution by adding more levels to the image."
|
1489 |
+
]
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"cell_type": "code",
|
1493 |
+
"execution_count": null,
|
1494 |
+
"id": "7d08992f",
|
1495 |
+
"metadata": {
|
1496 |
+
"execution": {},
|
1497 |
+
"lines_to_next_cell": 0
|
1498 |
+
},
|
1499 |
+
"outputs": [],
|
1500 |
+
"source": [
|
1501 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
1502 |
+
"ax.contour(x, y, f, levels=45);"
|
1503 |
+
]
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"cell_type": "markdown",
|
1507 |
+
"id": "8e1d37a2",
|
1508 |
+
"metadata": {},
|
1509 |
+
"source": [
|
1510 |
+
"To fine-tune the output of the\n",
|
1511 |
+
"`ax.contour()` function, take a\n",
|
1512 |
+
"look at the help file by typing `?plt.contour`.\n",
|
1513 |
+
" \n",
|
1514 |
+
"The `ax.imshow()` method is similar to \n",
|
1515 |
+
"`ax.contour()`, except that it produces a color-coded plot\n",
|
1516 |
+
"whose colors depend on the `z` value. This is known as a\n",
|
1517 |
+
"*heatmap*, and is sometimes used to plot temperature in\n",
|
1518 |
+
"weather forecasts."
|
1519 |
+
]
|
1520 |
+
},
|
1521 |
+
{
|
1522 |
+
"cell_type": "code",
|
1523 |
+
"execution_count": null,
|
1524 |
+
"id": "1f89d704",
|
1525 |
+
"metadata": {
|
1526 |
+
"execution": {},
|
1527 |
+
"lines_to_next_cell": 2
|
1528 |
+
},
|
1529 |
+
"outputs": [],
|
1530 |
+
"source": [
|
1531 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
1532 |
+
"ax.imshow(f);\n"
|
1533 |
+
]
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"cell_type": "markdown",
|
1537 |
+
"id": "2500a6ec",
|
1538 |
+
"metadata": {},
|
1539 |
+
"source": [
|
1540 |
+
"## Sequences and Slice Notation"
|
1541 |
+
]
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"cell_type": "markdown",
|
1545 |
+
"id": "07001b88",
|
1546 |
+
"metadata": {},
|
1547 |
+
"source": [
|
1548 |
+
"As seen above, the\n",
|
1549 |
+
"function `np.linspace()` can be used to create a sequence\n",
|
1550 |
+
"of numbers."
|
1551 |
+
]
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"cell_type": "code",
|
1555 |
+
"execution_count": null,
|
1556 |
+
"id": "cd971131",
|
1557 |
+
"metadata": {
|
1558 |
+
"execution": {},
|
1559 |
+
"lines_to_next_cell": 2
|
1560 |
+
},
|
1561 |
+
"outputs": [],
|
1562 |
+
"source": [
|
1563 |
+
"seq1 = np.linspace(0, 10, 11)\n",
|
1564 |
+
"seq1\n"
|
1565 |
+
]
|
1566 |
+
},
|
1567 |
+
{
|
1568 |
+
"cell_type": "markdown",
|
1569 |
+
"id": "926f96fc",
|
1570 |
+
"metadata": {},
|
1571 |
+
"source": [
|
1572 |
+
"The function `np.arange()`\n",
|
1573 |
+
" returns a sequence of numbers spaced out by `step`. If `step` is not specified, then a default value of $1$ is used. Let's create a sequence\n",
|
1574 |
+
" that starts at $0$ and ends at $10$."
|
1575 |
+
]
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"cell_type": "code",
|
1579 |
+
"execution_count": null,
|
1580 |
+
"id": "aa630d16",
|
1581 |
+
"metadata": {
|
1582 |
+
"execution": {}
|
1583 |
+
},
|
1584 |
+
"outputs": [],
|
1585 |
+
"source": [
|
1586 |
+
"seq2 = np.arange(0, 10)\n",
|
1587 |
+
"seq2\n"
|
1588 |
+
]
|
1589 |
+
},
|
1590 |
+
{
|
1591 |
+
"cell_type": "markdown",
|
1592 |
+
"id": "6908bad7",
|
1593 |
+
"metadata": {},
|
1594 |
+
"source": [
|
1595 |
+
"Why isn't $10$ output above? This has to do with *slice* notation in `Python`. \n",
|
1596 |
+
"Slice notation \n",
|
1597 |
+
"is used to index sequences such as lists, tuples and arrays.\n",
|
1598 |
+
"Suppose we want to retrieve the fourth through sixth (inclusive) entries\n",
|
1599 |
+
"of a string. We obtain a slice of the string using the indexing notation `[3:6]`."
|
1600 |
+
]
|
1601 |
+
},
|
1602 |
+
{
|
1603 |
+
"cell_type": "code",
|
1604 |
+
"execution_count": null,
|
1605 |
+
"id": "89955ee2",
|
1606 |
+
"metadata": {
|
1607 |
+
"execution": {},
|
1608 |
+
"lines_to_next_cell": 0
|
1609 |
+
},
|
1610 |
+
"outputs": [],
|
1611 |
+
"source": [
|
1612 |
+
"\"hello world\"[3:6]"
|
1613 |
+
]
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"cell_type": "markdown",
|
1617 |
+
"id": "17d73e4d",
|
1618 |
+
"metadata": {},
|
1619 |
+
"source": [
|
1620 |
+
"In the code block above, the notation `3:6` is shorthand for `slice(3,6)` when used inside\n",
|
1621 |
+
"`[]`. "
|
1622 |
+
]
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"cell_type": "code",
|
1626 |
+
"execution_count": null,
|
1627 |
+
"id": "517f592d",
|
1628 |
+
"metadata": {
|
1629 |
+
"execution": {}
|
1630 |
+
},
|
1631 |
+
"outputs": [],
|
1632 |
+
"source": [
|
1633 |
+
"\"hello world\"[slice(3,6)]\n"
|
1634 |
+
]
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"cell_type": "markdown",
|
1638 |
+
"id": "680fe656",
|
1639 |
+
"metadata": {},
|
1640 |
+
"source": [
|
1641 |
+
"You might have expected `slice(3,6)` to output the fourth through seventh characters in the text string (recalling that `Python` begins its indexing at zero), but instead it output the fourth through sixth. \n",
|
1642 |
+
" This also explains why the earlier `np.arange(0, 10)` command output only the integers from $0$ to $9$. \n",
|
1643 |
+
"See the documentation `slice?` for useful options in creating slices. \n",
|
1644 |
+
"\n",
|
1645 |
+
" \n",
|
1646 |
+
"\n",
|
1647 |
+
"\n",
|
1648 |
+
"\n",
|
1649 |
+
" \n",
|
1650 |
+
"\n",
|
1651 |
+
"\n",
|
1652 |
+
" \n",
|
1653 |
+
"\n",
|
1654 |
+
" \n",
|
1655 |
+
"\n",
|
1656 |
+
" \n",
|
1657 |
+
"\n",
|
1658 |
+
" \n",
|
1659 |
+
"\n",
|
1660 |
+
" \n",
|
1661 |
+
"\n",
|
1662 |
+
"\n",
|
1663 |
+
" \n"
|
1664 |
+
]
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"cell_type": "markdown",
|
1668 |
+
"id": "522a2761",
|
1669 |
+
"metadata": {},
|
1670 |
+
"source": [
|
1671 |
+
"## Indexing Data\n",
|
1672 |
+
"To begin, we create a two-dimensional `numpy` array."
|
1673 |
+
]
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"cell_type": "code",
|
1677 |
+
"execution_count": null,
|
1678 |
+
"id": "35927abd",
|
1679 |
+
"metadata": {
|
1680 |
+
"execution": {}
|
1681 |
+
},
|
1682 |
+
"outputs": [],
|
1683 |
+
"source": [
|
1684 |
+
"A = np.array(np.arange(16)).reshape((4, 4))\n",
|
1685 |
+
"A\n"
|
1686 |
+
]
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"cell_type": "markdown",
|
1690 |
+
"id": "27c88984",
|
1691 |
+
"metadata": {},
|
1692 |
+
"source": [
|
1693 |
+
"Typing `A[1,2]` retrieves the element corresponding to the second row and third\n",
|
1694 |
+
"column. (As usual, `Python` indexes from $0.$)"
|
1695 |
+
]
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"cell_type": "code",
|
1699 |
+
"execution_count": null,
|
1700 |
+
"id": "78ee7f5b",
|
1701 |
+
"metadata": {
|
1702 |
+
"execution": {}
|
1703 |
+
},
|
1704 |
+
"outputs": [],
|
1705 |
+
"source": [
|
1706 |
+
"A[1,2]\n"
|
1707 |
+
]
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"cell_type": "markdown",
|
1711 |
+
"id": "dd65ec1c",
|
1712 |
+
"metadata": {},
|
1713 |
+
"source": [
|
1714 |
+
"The first number after the open-bracket symbol `[`\n",
|
1715 |
+
" refers to the row, and the second number refers to the column. \n",
|
1716 |
+
"\n",
|
1717 |
+
"### Indexing Rows, Columns, and Submatrices\n",
|
1718 |
+
" To select multiple rows at a time, we can pass in a list\n",
|
1719 |
+
" specifying our selection. For instance, `[1,3]` will retrieve the second and fourth rows:"
|
1720 |
+
]
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"cell_type": "code",
|
1724 |
+
"execution_count": null,
|
1725 |
+
"id": "16212696",
|
1726 |
+
"metadata": {
|
1727 |
+
"execution": {}
|
1728 |
+
},
|
1729 |
+
"outputs": [],
|
1730 |
+
"source": [
|
1731 |
+
"A[[1,3]]\n"
|
1732 |
+
]
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"cell_type": "markdown",
|
1736 |
+
"id": "0b8b3ce3",
|
1737 |
+
"metadata": {},
|
1738 |
+
"source": [
|
1739 |
+
"To select the first and third columns, we pass in `[0,2]` as the second argument in the square brackets.\n",
|
1740 |
+
"In this case we need to supply the first argument `:` \n",
|
1741 |
+
"which selects all rows."
|
1742 |
+
]
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"cell_type": "code",
|
1746 |
+
"execution_count": null,
|
1747 |
+
"id": "d5f473d2",
|
1748 |
+
"metadata": {
|
1749 |
+
"execution": {}
|
1750 |
+
},
|
1751 |
+
"outputs": [],
|
1752 |
+
"source": [
|
1753 |
+
"A[:,[0,2]]\n"
|
1754 |
+
]
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"cell_type": "markdown",
|
1758 |
+
"id": "471ed1b4",
|
1759 |
+
"metadata": {},
|
1760 |
+
"source": [
|
1761 |
+
"Now, suppose that we want to select the submatrix made up of the second and fourth \n",
|
1762 |
+
"rows as well as the first and third columns. This is where\n",
|
1763 |
+
"indexing gets slightly tricky. It is natural to try to use lists to retrieve the rows and columns:"
|
1764 |
+
]
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"cell_type": "code",
|
1768 |
+
"execution_count": null,
|
1769 |
+
"id": "c89646d6",
|
1770 |
+
"metadata": {
|
1771 |
+
"execution": {}
|
1772 |
+
},
|
1773 |
+
"outputs": [],
|
1774 |
+
"source": [
|
1775 |
+
"A[[1,3],[0,2]]\n"
|
1776 |
+
]
|
1777 |
+
},
|
1778 |
+
{
|
1779 |
+
"cell_type": "markdown",
|
1780 |
+
"id": "9cbf1ff9",
|
1781 |
+
"metadata": {},
|
1782 |
+
"source": [
|
1783 |
+
" Oops --- what happened? We got a one-dimensional array of length two identical to"
|
1784 |
+
]
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"cell_type": "code",
|
1788 |
+
"execution_count": null,
|
1789 |
+
"id": "87f6b4f2",
|
1790 |
+
"metadata": {
|
1791 |
+
"execution": {}
|
1792 |
+
},
|
1793 |
+
"outputs": [],
|
1794 |
+
"source": [
|
1795 |
+
"np.array([A[1,0],A[3,2]])\n"
|
1796 |
+
]
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"cell_type": "markdown",
|
1800 |
+
"id": "9a93dc96",
|
1801 |
+
"metadata": {},
|
1802 |
+
"source": [
|
1803 |
+
" Similarly, the following code fails to extract the submatrix comprised of the second and fourth rows and the first, third, and fourth columns:"
|
1804 |
+
]
|
1805 |
+
},
|
1806 |
+
{
|
1807 |
+
"cell_type": "code",
|
1808 |
+
"execution_count": null,
|
1809 |
+
"id": "5da5bda8",
|
1810 |
+
"metadata": {
|
1811 |
+
"execution": {}
|
1812 |
+
},
|
1813 |
+
"outputs": [],
|
1814 |
+
"source": [
|
1815 |
+
"A[[1,3],[0,2,3]]\n"
|
1816 |
+
]
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"cell_type": "markdown",
|
1820 |
+
"id": "f4fd2f83",
|
1821 |
+
"metadata": {},
|
1822 |
+
"source": [
|
1823 |
+
"We can see what has gone wrong here. When supplied with two indexing lists, the `numpy` interpretation is that these provide pairs of $i,j$ indices for a series of entries. That is why the pair of lists must have the same length. However, that was not our intent, since we are looking for a submatrix.\n",
|
1824 |
+
"\n",
|
1825 |
+
"One easy way to do this is as follows. We first create a submatrix by subsetting the rows of `A`, and then on the fly we make a further submatrix by subsetting its columns.\n"
|
1826 |
+
]
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"cell_type": "code",
|
1830 |
+
"execution_count": null,
|
1831 |
+
"id": "ac48a95b",
|
1832 |
+
"metadata": {
|
1833 |
+
"execution": {},
|
1834 |
+
"lines_to_next_cell": 0
|
1835 |
+
},
|
1836 |
+
"outputs": [],
|
1837 |
+
"source": [
|
1838 |
+
"A[[1,3]][:,[0,2]]\n"
|
1839 |
+
]
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"cell_type": "markdown",
|
1843 |
+
"id": "5e8388aa",
|
1844 |
+
"metadata": {},
|
1845 |
+
"source": [
|
1846 |
+
" "
|
1847 |
+
]
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"cell_type": "markdown",
|
1851 |
+
"id": "a09467cd",
|
1852 |
+
"metadata": {},
|
1853 |
+
"source": [
|
1854 |
+
"There are more efficient ways of achieving the same result.\n",
|
1855 |
+
"\n",
|
1856 |
+
"The *convenience function* `np.ix_()` allows us to extract a submatrix\n",
|
1857 |
+
"using lists, by creating an intermediate *mesh* object."
|
1858 |
+
]
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"cell_type": "code",
|
1862 |
+
"execution_count": null,
|
1863 |
+
"id": "ee195cc4",
|
1864 |
+
"metadata": {
|
1865 |
+
"execution": {},
|
1866 |
+
"lines_to_next_cell": 2
|
1867 |
+
},
|
1868 |
+
"outputs": [],
|
1869 |
+
"source": [
|
1870 |
+
"idx = np.ix_([1,3],[0,2,3])\n",
|
1871 |
+
"A[idx]\n"
|
1872 |
+
]
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"cell_type": "markdown",
|
1876 |
+
"id": "b7177cb9",
|
1877 |
+
"metadata": {},
|
1878 |
+
"source": [
|
1879 |
+
"Alternatively, we can subset matrices efficiently using slices.\n",
|
1880 |
+
" \n",
|
1881 |
+
"The slice\n",
|
1882 |
+
"`1:4:2` captures the second and fourth items of a sequence, while the slice `0:3:2` captures\n",
|
1883 |
+
"the first and third items (the third element in a slice sequence is the step size)."
|
1884 |
+
]
|
1885 |
+
},
|
1886 |
+
{
|
1887 |
+
"cell_type": "code",
|
1888 |
+
"execution_count": null,
|
1889 |
+
"id": "48917bb5",
|
1890 |
+
"metadata": {
|
1891 |
+
"execution": {},
|
1892 |
+
"lines_to_next_cell": 0
|
1893 |
+
},
|
1894 |
+
"outputs": [],
|
1895 |
+
"source": [
|
1896 |
+
"A[1:4:2,0:3:2]\n"
|
1897 |
+
]
|
1898 |
+
},
|
1899 |
+
{
|
1900 |
+
"cell_type": "markdown",
|
1901 |
+
"id": "697c5ab0",
|
1902 |
+
"metadata": {},
|
1903 |
+
"source": [
|
1904 |
+
" "
|
1905 |
+
]
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"cell_type": "markdown",
|
1909 |
+
"id": "c647dbf0",
|
1910 |
+
"metadata": {},
|
1911 |
+
"source": [
|
1912 |
+
"Why are we able to retrieve a submatrix directly using slices but not using lists?\n",
|
1913 |
+
"Its because they are different `Python` types, and\n",
|
1914 |
+
"are treated differently by `numpy`.\n",
|
1915 |
+
"Slices can be used to extract objects from arbitrary sequences, such as strings, lists, and tuples, while the use of lists for indexing is more limited.\n",
|
1916 |
+
"\n",
|
1917 |
+
"\n",
|
1918 |
+
"\n",
|
1919 |
+
"\n",
|
1920 |
+
" \n",
|
1921 |
+
"\n",
|
1922 |
+
" \n",
|
1923 |
+
"\n",
|
1924 |
+
" \n",
|
1925 |
+
"\n",
|
1926 |
+
" "
|
1927 |
+
]
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"cell_type": "markdown",
|
1931 |
+
"id": "2dce8961",
|
1932 |
+
"metadata": {},
|
1933 |
+
"source": [
|
1934 |
+
"### Boolean Indexing\n",
|
1935 |
+
"In `numpy`, a *Boolean* is a type that equals either `True` or `False` (also represented as $1$ and $0$, respectively).\n",
|
1936 |
+
"The next line creates a vector of $0$'s, represented as Booleans, of length equal to the first dimension of `A`. "
|
1937 |
+
]
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"cell_type": "code",
|
1941 |
+
"execution_count": null,
|
1942 |
+
"id": "5d4caf22",
|
1943 |
+
"metadata": {
|
1944 |
+
"execution": {},
|
1945 |
+
"lines_to_next_cell": 0
|
1946 |
+
},
|
1947 |
+
"outputs": [],
|
1948 |
+
"source": [
|
1949 |
+
"keep_rows = np.zeros(A.shape[0], bool)\n",
|
1950 |
+
"keep_rows"
|
1951 |
+
]
|
1952 |
+
},
|
1953 |
+
{
|
1954 |
+
"cell_type": "markdown",
|
1955 |
+
"id": "d83fadb5",
|
1956 |
+
"metadata": {},
|
1957 |
+
"source": [
|
1958 |
+
"We now set two of the elements to `True`. "
|
1959 |
+
]
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"cell_type": "code",
|
1963 |
+
"execution_count": null,
|
1964 |
+
"id": "348820e3",
|
1965 |
+
"metadata": {
|
1966 |
+
"execution": {}
|
1967 |
+
},
|
1968 |
+
"outputs": [],
|
1969 |
+
"source": [
|
1970 |
+
"keep_rows[[1,3]] = True\n",
|
1971 |
+
"keep_rows\n"
|
1972 |
+
]
|
1973 |
+
},
|
1974 |
+
{
|
1975 |
+
"cell_type": "markdown",
|
1976 |
+
"id": "a0fb487d",
|
1977 |
+
"metadata": {},
|
1978 |
+
"source": [
|
1979 |
+
"Note that the elements of `keep_rows`, when viewed as integers, are the same as the\n",
|
1980 |
+
"values of `np.array([0,1,0,1])`. Below, we use `==` to verify their equality. When\n",
|
1981 |
+
"applied to two arrays, the `==` operation is applied elementwise."
|
1982 |
+
]
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"cell_type": "code",
|
1986 |
+
"execution_count": null,
|
1987 |
+
"id": "4aafe45b",
|
1988 |
+
"metadata": {
|
1989 |
+
"execution": {}
|
1990 |
+
},
|
1991 |
+
"outputs": [],
|
1992 |
+
"source": [
|
1993 |
+
"np.all(keep_rows == np.array([0,1,0,1]))\n"
|
1994 |
+
]
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"cell_type": "markdown",
|
1998 |
+
"id": "603c0c53",
|
1999 |
+
"metadata": {},
|
2000 |
+
"source": [
|
2001 |
+
"(Here, the function `np.all()` has checked whether\n",
|
2002 |
+
"all entries of an array are `True`. A similar function, `np.any()`, can be used to check whether any entries of an array are `True`.)"
|
2003 |
+
]
|
2004 |
+
},
|
2005 |
+
{
|
2006 |
+
"cell_type": "markdown",
|
2007 |
+
"id": "b0a449d1",
|
2008 |
+
"metadata": {},
|
2009 |
+
"source": [
|
2010 |
+
" However, even though `np.array([0,1,0,1])` and `keep_rows` are equal according to `==`, they index different sets of rows!\n",
|
2011 |
+
"The former retrieves the first, second, first, and second rows of `A`. "
|
2012 |
+
]
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"cell_type": "code",
|
2016 |
+
"execution_count": null,
|
2017 |
+
"id": "1be6a588",
|
2018 |
+
"metadata": {
|
2019 |
+
"execution": {}
|
2020 |
+
},
|
2021 |
+
"outputs": [],
|
2022 |
+
"source": [
|
2023 |
+
"A[np.array([0,1,0,1])]\n"
|
2024 |
+
]
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"cell_type": "markdown",
|
2028 |
+
"id": "e45bbebe",
|
2029 |
+
"metadata": {},
|
2030 |
+
"source": [
|
2031 |
+
" By contrast, `keep_rows` retrieves only the second and fourth rows of `A` --- i.e. the rows for which the Boolean equals `TRUE`. "
|
2032 |
+
]
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"cell_type": "code",
|
2036 |
+
"execution_count": null,
|
2037 |
+
"id": "e83da57b",
|
2038 |
+
"metadata": {
|
2039 |
+
"execution": {}
|
2040 |
+
},
|
2041 |
+
"outputs": [],
|
2042 |
+
"source": [
|
2043 |
+
"A[keep_rows]\n"
|
2044 |
+
]
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"cell_type": "markdown",
|
2048 |
+
"id": "374d34a7",
|
2049 |
+
"metadata": {},
|
2050 |
+
"source": [
|
2051 |
+
"This example shows that Booleans and integers are treated differently by `numpy`."
|
2052 |
+
]
|
2053 |
+
},
|
2054 |
+
{
|
2055 |
+
"cell_type": "markdown",
|
2056 |
+
"id": "25db74bf",
|
2057 |
+
"metadata": {},
|
2058 |
+
"source": [
|
2059 |
+
"We again make use of the `np.ix_()` function\n",
|
2060 |
+
" to create a mesh containing the second and fourth rows, and the first, third, and fourth columns. This time, we apply the function to Booleans,\n",
|
2061 |
+
" rather than lists."
|
2062 |
+
]
|
2063 |
+
},
|
2064 |
+
{
|
2065 |
+
"cell_type": "code",
|
2066 |
+
"execution_count": null,
|
2067 |
+
"id": "09675294",
|
2068 |
+
"metadata": {
|
2069 |
+
"execution": {}
|
2070 |
+
},
|
2071 |
+
"outputs": [],
|
2072 |
+
"source": [
|
2073 |
+
"keep_cols = np.zeros(A.shape[1], bool)\n",
|
2074 |
+
"keep_cols[[0, 2, 3]] = True\n",
|
2075 |
+
"idx_bool = np.ix_(keep_rows, keep_cols)\n",
|
2076 |
+
"A[idx_bool]\n"
|
2077 |
+
]
|
2078 |
+
},
|
2079 |
+
{
|
2080 |
+
"cell_type": "markdown",
|
2081 |
+
"id": "0166c179",
|
2082 |
+
"metadata": {},
|
2083 |
+
"source": [
|
2084 |
+
"We can also mix a list with an array of Booleans in the arguments to `np.ix_()`:"
|
2085 |
+
]
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"cell_type": "code",
|
2089 |
+
"execution_count": null,
|
2090 |
+
"id": "a85614e4",
|
2091 |
+
"metadata": {
|
2092 |
+
"execution": {},
|
2093 |
+
"lines_to_next_cell": 0
|
2094 |
+
},
|
2095 |
+
"outputs": [],
|
2096 |
+
"source": [
|
2097 |
+
"idx_mixed = np.ix_([1,3], keep_cols)\n",
|
2098 |
+
"A[idx_mixed]\n"
|
2099 |
+
]
|
2100 |
+
},
|
2101 |
+
{
|
2102 |
+
"cell_type": "markdown",
|
2103 |
+
"id": "f6a338f1",
|
2104 |
+
"metadata": {},
|
2105 |
+
"source": [
|
2106 |
+
" "
|
2107 |
+
]
|
2108 |
+
},
|
2109 |
+
{
|
2110 |
+
"cell_type": "markdown",
|
2111 |
+
"id": "b3541e0c",
|
2112 |
+
"metadata": {},
|
2113 |
+
"source": [
|
2114 |
+
"For more details on indexing in `numpy`, readers are referred\n",
|
2115 |
+
"to the `numpy` tutorial mentioned earlier.\n"
|
2116 |
+
]
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"cell_type": "markdown",
|
2120 |
+
"id": "ab75f168",
|
2121 |
+
"metadata": {},
|
2122 |
+
"source": [
|
2123 |
+
"## Loading Data\n",
|
2124 |
+
"\n",
|
2125 |
+
"Data sets often contain different types of data, and may have names associated with the rows or columns. \n",
|
2126 |
+
"For these reasons, they typically are best accommodated using a\n",
|
2127 |
+
" *data frame*. \n",
|
2128 |
+
" We can think of a data frame as a sequence\n",
|
2129 |
+
"of arrays of identical length; these are the columns. Entries in the\n",
|
2130 |
+
"different arrays can be combined to form a row.\n",
|
2131 |
+
" The `pandas`\n",
|
2132 |
+
"library can be used to create and work with data frame objects."
|
2133 |
+
]
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"cell_type": "markdown",
|
2137 |
+
"id": "ca018d13",
|
2138 |
+
"metadata": {},
|
2139 |
+
"source": [
|
2140 |
+
"### Reading in a Data Set\n",
|
2141 |
+
"\n",
|
2142 |
+
"The first step of most analyses involves importing a data set into\n",
|
2143 |
+
"`Python`. \n",
|
2144 |
+
" Before attempting to load\n",
|
2145 |
+
"a data set, we must make sure that `Python` knows where to find the file containing it. \n",
|
2146 |
+
"If the\n",
|
2147 |
+
"file is in the same location\n",
|
2148 |
+
"as this notebook file, then we are all set. \n",
|
2149 |
+
"Otherwise, \n",
|
2150 |
+
"the command\n",
|
2151 |
+
"`os.chdir()` can be used to *change directory*. (You will need to call `import os` before calling `os.chdir()`.) "
|
2152 |
+
]
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"cell_type": "markdown",
|
2156 |
+
"id": "b76342df",
|
2157 |
+
"metadata": {},
|
2158 |
+
"source": [
|
2159 |
+
"We will begin by reading in `Auto.csv`, available on the book website. This is a comma-separated file, and can be read in using `pd.read_csv()`: "
|
2160 |
+
]
|
2161 |
+
},
|
2162 |
+
{
|
2163 |
+
"cell_type": "code",
|
2164 |
+
"execution_count": null,
|
2165 |
+
"id": "ff81e644",
|
2166 |
+
"metadata": {
|
2167 |
+
"execution": {}
|
2168 |
+
},
|
2169 |
+
"outputs": [],
|
2170 |
+
"source": [
|
2171 |
+
"import pandas as pd\n",
|
2172 |
+
"Auto = pd.read_csv('Auto.csv')\n",
|
2173 |
+
"Auto\n"
|
2174 |
+
]
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"cell_type": "markdown",
|
2178 |
+
"id": "42d6a799",
|
2179 |
+
"metadata": {},
|
2180 |
+
"source": [
|
2181 |
+
"The book website also has a whitespace-delimited version of this data, called `Auto.data`. This can be read in as follows:"
|
2182 |
+
]
|
2183 |
+
},
|
2184 |
+
{
|
2185 |
+
"cell_type": "code",
|
2186 |
+
"execution_count": null,
|
2187 |
+
"id": "5b45aa7f",
|
2188 |
+
"metadata": {
|
2189 |
+
"execution": {},
|
2190 |
+
"lines_to_next_cell": 0
|
2191 |
+
},
|
2192 |
+
"outputs": [],
|
2193 |
+
"source": [
|
2194 |
+
"Auto = pd.read_csv('Auto.data', delim_whitespace=True)\n"
|
2195 |
+
]
|
2196 |
+
},
|
2197 |
+
{
|
2198 |
+
"cell_type": "markdown",
|
2199 |
+
"id": "f942c457",
|
2200 |
+
"metadata": {},
|
2201 |
+
"source": [
|
2202 |
+
" Both `Auto.csv` and `Auto.data` are simply text\n",
|
2203 |
+
"files. Before loading data into `Python`, it is a good idea to view it using\n",
|
2204 |
+
"a text editor or other software, such as Microsoft Excel.\n",
|
2205 |
+
"\n"
|
2206 |
+
]
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"cell_type": "markdown",
|
2210 |
+
"id": "1aceff38",
|
2211 |
+
"metadata": {},
|
2212 |
+
"source": [
|
2213 |
+
"We now take a look at the column of `Auto` corresponding to the variable `horsepower`: "
|
2214 |
+
]
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"cell_type": "code",
|
2218 |
+
"execution_count": null,
|
2219 |
+
"id": "413f626a",
|
2220 |
+
"metadata": {
|
2221 |
+
"execution": {},
|
2222 |
+
"lines_to_next_cell": 0
|
2223 |
+
},
|
2224 |
+
"outputs": [],
|
2225 |
+
"source": [
|
2226 |
+
"Auto['horsepower']\n"
|
2227 |
+
]
|
2228 |
+
},
|
2229 |
+
{
|
2230 |
+
"cell_type": "markdown",
|
2231 |
+
"id": "fd11e757",
|
2232 |
+
"metadata": {},
|
2233 |
+
"source": [
|
2234 |
+
"We see that the `dtype` of this column is `object`. \n",
|
2235 |
+
"It turns out that all values of the `horsepower` column were interpreted as strings when reading\n",
|
2236 |
+
"in the data. \n",
|
2237 |
+
"We can find out why by looking at the unique values."
|
2238 |
+
]
|
2239 |
+
},
|
2240 |
+
{
|
2241 |
+
"cell_type": "code",
|
2242 |
+
"execution_count": null,
|
2243 |
+
"id": "57b86346",
|
2244 |
+
"metadata": {
|
2245 |
+
"execution": {},
|
2246 |
+
"lines_to_next_cell": 0
|
2247 |
+
},
|
2248 |
+
"outputs": [],
|
2249 |
+
"source": [
|
2250 |
+
"np.unique(Auto['horsepower'])\n"
|
2251 |
+
]
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"cell_type": "markdown",
|
2255 |
+
"id": "f0aee233",
|
2256 |
+
"metadata": {},
|
2257 |
+
"source": [
|
2258 |
+
"We see the culprit is the value `?`, which is being used to encode missing values.\n",
|
2259 |
+
"\n"
|
2260 |
+
]
|
2261 |
+
},
|
2262 |
+
{
|
2263 |
+
"cell_type": "markdown",
|
2264 |
+
"id": "b7b032d4",
|
2265 |
+
"metadata": {},
|
2266 |
+
"source": [
|
2267 |
+
"To fix the problem, we must provide `pd.read_csv()` with an argument called `na_values`.\n",
|
2268 |
+
"Now, each instance of `?` in the file is replaced with the\n",
|
2269 |
+
"value `np.nan`, which means *not a number*:"
|
2270 |
+
]
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"cell_type": "code",
|
2274 |
+
"execution_count": null,
|
2275 |
+
"id": "a9698b26",
|
2276 |
+
"metadata": {
|
2277 |
+
"execution": {},
|
2278 |
+
"lines_to_next_cell": 2
|
2279 |
+
},
|
2280 |
+
"outputs": [],
|
2281 |
+
"source": [
|
2282 |
+
"Auto = pd.read_csv('Auto.data',\n",
|
2283 |
+
" na_values=['?'],\n",
|
2284 |
+
" delim_whitespace=True)\n",
|
2285 |
+
"Auto['horsepower'].sum()\n"
|
2286 |
+
]
|
2287 |
+
},
|
2288 |
+
{
|
2289 |
+
"cell_type": "markdown",
|
2290 |
+
"id": "13cb364e",
|
2291 |
+
"metadata": {},
|
2292 |
+
"source": [
|
2293 |
+
"The `Auto.shape` attribute tells us that the data has 397\n",
|
2294 |
+
"observations, or rows, and nine variables, or columns."
|
2295 |
+
]
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"cell_type": "code",
|
2299 |
+
"execution_count": null,
|
2300 |
+
"id": "4877cb2c",
|
2301 |
+
"metadata": {
|
2302 |
+
"execution": {}
|
2303 |
+
},
|
2304 |
+
"outputs": [],
|
2305 |
+
"source": [
|
2306 |
+
"Auto.shape\n"
|
2307 |
+
]
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"cell_type": "markdown",
|
2311 |
+
"id": "3fdc6f47",
|
2312 |
+
"metadata": {},
|
2313 |
+
"source": [
|
2314 |
+
"There are\n",
|
2315 |
+
"various ways to deal with missing data. \n",
|
2316 |
+
"In this case, since only five of the rows contain missing\n",
|
2317 |
+
"observations, we choose to use the `Auto.dropna()` method to simply remove these rows."
|
2318 |
+
]
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"cell_type": "code",
|
2322 |
+
"execution_count": null,
|
2323 |
+
"id": "2ba1d33d",
|
2324 |
+
"metadata": {
|
2325 |
+
"execution": {},
|
2326 |
+
"lines_to_next_cell": 2
|
2327 |
+
},
|
2328 |
+
"outputs": [],
|
2329 |
+
"source": [
|
2330 |
+
"Auto_new = Auto.dropna()\n",
|
2331 |
+
"Auto_new.shape\n"
|
2332 |
+
]
|
2333 |
+
},
|
2334 |
+
{
|
2335 |
+
"cell_type": "markdown",
|
2336 |
+
"id": "ac9748d9",
|
2337 |
+
"metadata": {},
|
2338 |
+
"source": [
|
2339 |
+
"### Basics of Selecting Rows and Columns\n",
|
2340 |
+
" \n",
|
2341 |
+
"We can use `Auto.columns` to check the variable names."
|
2342 |
+
]
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"cell_type": "code",
|
2346 |
+
"execution_count": null,
|
2347 |
+
"id": "3d03baab",
|
2348 |
+
"metadata": {
|
2349 |
+
"execution": {},
|
2350 |
+
"lines_to_next_cell": 2
|
2351 |
+
},
|
2352 |
+
"outputs": [],
|
2353 |
+
"source": [
|
2354 |
+
"Auto = Auto_new # overwrite the previous value\n",
|
2355 |
+
"Auto.columns\n"
|
2356 |
+
]
|
2357 |
+
},
|
2358 |
+
{
|
2359 |
+
"cell_type": "markdown",
|
2360 |
+
"id": "d24d4d42",
|
2361 |
+
"metadata": {},
|
2362 |
+
"source": [
|
2363 |
+
"Accessing the rows and columns of a data frame is similar, but not identical, to accessing the rows and columns of an array. \n",
|
2364 |
+
"Recall that the first argument to the `[]` method\n",
|
2365 |
+
"is always applied to the rows of the array. \n",
|
2366 |
+
"Similarly, \n",
|
2367 |
+
"passing in a slice to the `[]` method creates a data frame whose *rows* are determined by the slice:"
|
2368 |
+
]
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"cell_type": "code",
|
2372 |
+
"execution_count": null,
|
2373 |
+
"id": "410b4dd7",
|
2374 |
+
"metadata": {
|
2375 |
+
"execution": {},
|
2376 |
+
"lines_to_next_cell": 0
|
2377 |
+
},
|
2378 |
+
"outputs": [],
|
2379 |
+
"source": [
|
2380 |
+
"Auto[:3]\n"
|
2381 |
+
]
|
2382 |
+
},
|
2383 |
+
{
|
2384 |
+
"cell_type": "markdown",
|
2385 |
+
"id": "4ea0be7b",
|
2386 |
+
"metadata": {},
|
2387 |
+
"source": [
|
2388 |
+
"Similarly, an array of Booleans can be used to subset the rows:"
|
2389 |
+
]
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"cell_type": "code",
|
2393 |
+
"execution_count": null,
|
2394 |
+
"id": "3540804d",
|
2395 |
+
"metadata": {
|
2396 |
+
"execution": {},
|
2397 |
+
"lines_to_next_cell": 0
|
2398 |
+
},
|
2399 |
+
"outputs": [],
|
2400 |
+
"source": [
|
2401 |
+
"idx_80 = Auto['year'] > 80\n",
|
2402 |
+
"Auto[idx_80]\n"
|
2403 |
+
]
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"cell_type": "markdown",
|
2407 |
+
"id": "a02221a2",
|
2408 |
+
"metadata": {},
|
2409 |
+
"source": [
|
2410 |
+
"However, if we pass in a list of strings to the `[]` method, then we obtain a data frame containing the corresponding set of *columns*. "
|
2411 |
+
]
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"cell_type": "code",
|
2415 |
+
"execution_count": null,
|
2416 |
+
"id": "66d174f1",
|
2417 |
+
"metadata": {
|
2418 |
+
"execution": {},
|
2419 |
+
"lines_to_next_cell": 0
|
2420 |
+
},
|
2421 |
+
"outputs": [],
|
2422 |
+
"source": [
|
2423 |
+
"Auto[['mpg', 'horsepower']]\n"
|
2424 |
+
]
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"cell_type": "markdown",
|
2428 |
+
"id": "54bef6a3",
|
2429 |
+
"metadata": {},
|
2430 |
+
"source": [
|
2431 |
+
"Since we did not specify an *index* column when we loaded our data frame, the rows are labeled using integers\n",
|
2432 |
+
"0 to 396."
|
2433 |
+
]
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"cell_type": "code",
|
2437 |
+
"execution_count": null,
|
2438 |
+
"id": "52789c77",
|
2439 |
+
"metadata": {
|
2440 |
+
"execution": {},
|
2441 |
+
"lines_to_next_cell": 0
|
2442 |
+
},
|
2443 |
+
"outputs": [],
|
2444 |
+
"source": [
|
2445 |
+
"Auto.index\n"
|
2446 |
+
]
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"cell_type": "markdown",
|
2450 |
+
"id": "3f5fcb26",
|
2451 |
+
"metadata": {},
|
2452 |
+
"source": [
|
2453 |
+
"We can use the\n",
|
2454 |
+
"`set_index()` method to re-name the rows using the contents of `Auto['name']`. "
|
2455 |
+
]
|
2456 |
+
},
|
2457 |
+
{
|
2458 |
+
"cell_type": "code",
|
2459 |
+
"execution_count": null,
|
2460 |
+
"id": "d83650bf",
|
2461 |
+
"metadata": {
|
2462 |
+
"execution": {}
|
2463 |
+
},
|
2464 |
+
"outputs": [],
|
2465 |
+
"source": [
|
2466 |
+
"Auto_re = Auto.set_index('name')\n",
|
2467 |
+
"Auto_re\n"
|
2468 |
+
]
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"cell_type": "code",
|
2472 |
+
"execution_count": null,
|
2473 |
+
"id": "880d79d9",
|
2474 |
+
"metadata": {
|
2475 |
+
"execution": {},
|
2476 |
+
"lines_to_next_cell": 0
|
2477 |
+
},
|
2478 |
+
"outputs": [],
|
2479 |
+
"source": [
|
2480 |
+
"Auto_re.columns\n"
|
2481 |
+
]
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"cell_type": "markdown",
|
2485 |
+
"id": "dbee53b8",
|
2486 |
+
"metadata": {},
|
2487 |
+
"source": [
|
2488 |
+
"We see that the column `'name'` is no longer there.\n",
|
2489 |
+
" \n",
|
2490 |
+
"Now that the index has been set to `name`, we can access rows of the data \n",
|
2491 |
+
"frame by `name` using the `{loc[]`} method of\n",
|
2492 |
+
"`Auto`:"
|
2493 |
+
]
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"cell_type": "code",
|
2497 |
+
"execution_count": null,
|
2498 |
+
"id": "c01f4095",
|
2499 |
+
"metadata": {
|
2500 |
+
"execution": {},
|
2501 |
+
"lines_to_next_cell": 0
|
2502 |
+
},
|
2503 |
+
"outputs": [],
|
2504 |
+
"source": [
|
2505 |
+
"rows = ['amc rebel sst', 'ford torino']\n",
|
2506 |
+
"Auto_re.loc[rows]\n"
|
2507 |
+
]
|
2508 |
+
},
|
2509 |
+
{
|
2510 |
+
"cell_type": "markdown",
|
2511 |
+
"id": "29688cab",
|
2512 |
+
"metadata": {},
|
2513 |
+
"source": [
|
2514 |
+
"As an alternative to using the index name, we could retrieve the 4th and 5th rows of `Auto` using the `{iloc[]`} method:"
|
2515 |
+
]
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"cell_type": "code",
|
2519 |
+
"execution_count": null,
|
2520 |
+
"id": "a4202eb8",
|
2521 |
+
"metadata": {
|
2522 |
+
"execution": {},
|
2523 |
+
"lines_to_next_cell": 0
|
2524 |
+
},
|
2525 |
+
"outputs": [],
|
2526 |
+
"source": [
|
2527 |
+
"Auto_re.iloc[[3,4]]\n"
|
2528 |
+
]
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"cell_type": "markdown",
|
2532 |
+
"id": "5427ede0",
|
2533 |
+
"metadata": {},
|
2534 |
+
"source": [
|
2535 |
+
"We can also use it to retrieve the 1st, 3rd and and 4th columns of `Auto_re`:"
|
2536 |
+
]
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"cell_type": "code",
|
2540 |
+
"execution_count": null,
|
2541 |
+
"id": "948b2d07",
|
2542 |
+
"metadata": {
|
2543 |
+
"execution": {},
|
2544 |
+
"lines_to_next_cell": 0
|
2545 |
+
},
|
2546 |
+
"outputs": [],
|
2547 |
+
"source": [
|
2548 |
+
"Auto_re.iloc[:,[0,2,3]]\n"
|
2549 |
+
]
|
2550 |
+
},
|
2551 |
+
{
|
2552 |
+
"cell_type": "markdown",
|
2553 |
+
"id": "b83d56eb",
|
2554 |
+
"metadata": {},
|
2555 |
+
"source": [
|
2556 |
+
"We can extract the 4th and 5th rows, as well as the 1st, 3rd and 4th columns, using\n",
|
2557 |
+
"a single call to `iloc[]`:"
|
2558 |
+
]
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"cell_type": "code",
|
2562 |
+
"execution_count": null,
|
2563 |
+
"id": "1cfdcc5c",
|
2564 |
+
"metadata": {
|
2565 |
+
"execution": {},
|
2566 |
+
"lines_to_next_cell": 0
|
2567 |
+
},
|
2568 |
+
"outputs": [],
|
2569 |
+
"source": [
|
2570 |
+
"Auto_re.iloc[[3,4],[0,2,3]]\n"
|
2571 |
+
]
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"cell_type": "markdown",
|
2575 |
+
"id": "2bde6514",
|
2576 |
+
"metadata": {},
|
2577 |
+
"source": [
|
2578 |
+
"Index entries need not be unique: there are several cars in the data frame named `ford galaxie 500`."
|
2579 |
+
]
|
2580 |
+
},
|
2581 |
+
{
|
2582 |
+
"cell_type": "code",
|
2583 |
+
"execution_count": null,
|
2584 |
+
"id": "fd9c5cda",
|
2585 |
+
"metadata": {
|
2586 |
+
"execution": {},
|
2587 |
+
"lines_to_next_cell": 0
|
2588 |
+
},
|
2589 |
+
"outputs": [],
|
2590 |
+
"source": [
|
2591 |
+
"Auto_re.loc['ford galaxie 500', ['mpg', 'origin']]\n"
|
2592 |
+
]
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"cell_type": "markdown",
|
2596 |
+
"id": "4d097282",
|
2597 |
+
"metadata": {},
|
2598 |
+
"source": [
|
2599 |
+
"### More on Selecting Rows and Columns\n",
|
2600 |
+
"Suppose now that we want to create a data frame consisting of the `weight` and `origin` of the subset of cars with \n",
|
2601 |
+
"`year` greater than 80 --- i.e. those built after 1980.\n",
|
2602 |
+
"To do this, we first create a Boolean array that indexes the rows.\n",
|
2603 |
+
"The `loc[]` method allows for Boolean entries as well as strings:"
|
2604 |
+
]
|
2605 |
+
},
|
2606 |
+
{
|
2607 |
+
"cell_type": "code",
|
2608 |
+
"execution_count": null,
|
2609 |
+
"id": "6d431cb5",
|
2610 |
+
"metadata": {
|
2611 |
+
"execution": {},
|
2612 |
+
"lines_to_next_cell": 2
|
2613 |
+
},
|
2614 |
+
"outputs": [],
|
2615 |
+
"source": [
|
2616 |
+
"idx_80 = Auto_re['year'] > 80\n",
|
2617 |
+
"Auto_re.loc[idx_80, ['weight', 'origin']]\n"
|
2618 |
+
]
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"cell_type": "markdown",
|
2622 |
+
"id": "838a03e0",
|
2623 |
+
"metadata": {},
|
2624 |
+
"source": [
|
2625 |
+
"To do this more concisely, we can use an anonymous function called a `lambda`: "
|
2626 |
+
]
|
2627 |
+
},
|
2628 |
+
{
|
2629 |
+
"cell_type": "code",
|
2630 |
+
"execution_count": null,
|
2631 |
+
"id": "fac41ce1",
|
2632 |
+
"metadata": {
|
2633 |
+
"execution": {},
|
2634 |
+
"lines_to_next_cell": 0
|
2635 |
+
},
|
2636 |
+
"outputs": [],
|
2637 |
+
"source": [
|
2638 |
+
"Auto_re.loc[lambda df: df['year'] > 80, ['weight', 'origin']]\n"
|
2639 |
+
]
|
2640 |
+
},
|
2641 |
+
{
|
2642 |
+
"cell_type": "markdown",
|
2643 |
+
"id": "08e61254",
|
2644 |
+
"metadata": {},
|
2645 |
+
"source": [
|
2646 |
+
"The `lambda` call creates a function that takes a single\n",
|
2647 |
+
"argument, here `df`, and returns `df['year']>80`.\n",
|
2648 |
+
"Since it is created inside the `loc[]` method for the\n",
|
2649 |
+
"dataframe `Auto_re`, that dataframe will be the argument supplied.\n",
|
2650 |
+
"As another example of using a `lambda`, suppose that\n",
|
2651 |
+
"we want all cars built after 1980 that achieve greater than 30 miles per gallon:"
|
2652 |
+
]
|
2653 |
+
},
|
2654 |
+
{
|
2655 |
+
"cell_type": "code",
|
2656 |
+
"execution_count": null,
|
2657 |
+
"id": "b0885654",
|
2658 |
+
"metadata": {
|
2659 |
+
"execution": {},
|
2660 |
+
"lines_to_next_cell": 0
|
2661 |
+
},
|
2662 |
+
"outputs": [],
|
2663 |
+
"source": [
|
2664 |
+
"Auto_re.loc[lambda df: (df['year'] > 80) & (df['mpg'] > 30),\n",
|
2665 |
+
" ['weight', 'origin']\n",
|
2666 |
+
" ]\n"
|
2667 |
+
]
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"cell_type": "markdown",
|
2671 |
+
"id": "d87fc459",
|
2672 |
+
"metadata": {},
|
2673 |
+
"source": [
|
2674 |
+
"The symbol `&` computes an element-wise *and* operation.\n",
|
2675 |
+
"As another example, suppose that we want to retrieve all `Ford` and `Datsun`\n",
|
2676 |
+
"cars with `displacement` less than 300. We check whether each `name` entry contains either the string `ford` or `datsun` using the `str.contains()` method of the `index` attribute of \n",
|
2677 |
+
"of the dataframe:"
|
2678 |
+
]
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"cell_type": "code",
|
2682 |
+
"execution_count": null,
|
2683 |
+
"id": "213945a6",
|
2684 |
+
"metadata": {
|
2685 |
+
"execution": {},
|
2686 |
+
"lines_to_next_cell": 0
|
2687 |
+
},
|
2688 |
+
"outputs": [],
|
2689 |
+
"source": [
|
2690 |
+
"Auto_re.loc[lambda df: (df['displacement'] < 300)\n",
|
2691 |
+
" & (df.index.str.contains('ford')\n",
|
2692 |
+
" | df.index.str.contains('datsun')),\n",
|
2693 |
+
" ['weight', 'origin']\n",
|
2694 |
+
" ]\n"
|
2695 |
+
]
|
2696 |
+
},
|
2697 |
+
{
|
2698 |
+
"cell_type": "markdown",
|
2699 |
+
"id": "8a940fd1",
|
2700 |
+
"metadata": {},
|
2701 |
+
"source": [
|
2702 |
+
"Here, the symbol `|` computes an element-wise *or* operation.\n",
|
2703 |
+
" \n",
|
2704 |
+
"In summary, a powerful set of operations is available to index the rows and columns of data frames. For integer based queries, use the `iloc[]` method. For string and Boolean\n",
|
2705 |
+
"selections, use the `loc[]` method. For functional queries that filter rows, use the `loc[]` method\n",
|
2706 |
+
"with a function (typically a `lambda`) in the rows argument.\n",
|
2707 |
+
"\n",
|
2708 |
+
"## For Loops\n",
|
2709 |
+
"A `for` loop is a standard tool in many languages that\n",
|
2710 |
+
"repeatedly evaluates some chunk of code while\n",
|
2711 |
+
"varying different values inside the code.\n",
|
2712 |
+
"For example, suppose we loop over elements of a list and compute their sum."
|
2713 |
+
]
|
2714 |
+
},
|
2715 |
+
{
|
2716 |
+
"cell_type": "code",
|
2717 |
+
"execution_count": null,
|
2718 |
+
"id": "a3c4060a",
|
2719 |
+
"metadata": {
|
2720 |
+
"execution": {},
|
2721 |
+
"lines_to_next_cell": 0
|
2722 |
+
},
|
2723 |
+
"outputs": [],
|
2724 |
+
"source": [
|
2725 |
+
"total = 0\n",
|
2726 |
+
"for value in [3,2,19]:\n",
|
2727 |
+
" total += value\n",
|
2728 |
+
"print('Total is: {0}'.format(total))\n"
|
2729 |
+
]
|
2730 |
+
},
|
2731 |
+
{
|
2732 |
+
"cell_type": "markdown",
|
2733 |
+
"id": "9117e3a1",
|
2734 |
+
"metadata": {},
|
2735 |
+
"source": [
|
2736 |
+
"The indented code beneath the line with the `for` statement is run\n",
|
2737 |
+
"for each value in the sequence\n",
|
2738 |
+
"specified in the `for` statement. The loop ends either\n",
|
2739 |
+
"when the cell ends or when code is indented at the same level\n",
|
2740 |
+
"as the original `for` statement.\n",
|
2741 |
+
"We see that the final line above which prints the total is executed\n",
|
2742 |
+
"only once after the for loop has terminated. Loops\n",
|
2743 |
+
"can be nested by additional indentation."
|
2744 |
+
]
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"cell_type": "code",
|
2748 |
+
"execution_count": null,
|
2749 |
+
"id": "f2bffb69",
|
2750 |
+
"metadata": {
|
2751 |
+
"execution": {},
|
2752 |
+
"lines_to_next_cell": 0
|
2753 |
+
},
|
2754 |
+
"outputs": [],
|
2755 |
+
"source": [
|
2756 |
+
"total = 0\n",
|
2757 |
+
"for value in [2,3,19]:\n",
|
2758 |
+
" for weight in [3, 2, 1]:\n",
|
2759 |
+
" total += value * weight\n",
|
2760 |
+
"print('Total is: {0}'.format(total))"
|
2761 |
+
]
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"cell_type": "markdown",
|
2765 |
+
"id": "9f99e85b",
|
2766 |
+
"metadata": {},
|
2767 |
+
"source": [
|
2768 |
+
"Above, we summed over each combination of `value` and `weight`.\n",
|
2769 |
+
"We also took advantage of the *increment* notation\n",
|
2770 |
+
"in `Python`: the expression `a += b` is equivalent\n",
|
2771 |
+
"to `a = a + b`. Besides\n",
|
2772 |
+
"being a convenient notation, this can save time in computationally\n",
|
2773 |
+
"heavy tasks in which the intermediate value of `a+b` need not\n",
|
2774 |
+
"be explicitly created.\n",
|
2775 |
+
"\n",
|
2776 |
+
"Perhaps a more\n",
|
2777 |
+
"common task would be to sum over `(value, weight)` pairs. For instance,\n",
|
2778 |
+
"to compute the average value of a random variable that takes on\n",
|
2779 |
+
"possible values 2, 3 or 19 with probability 0.2, 0.3, 0.5 respectively\n",
|
2780 |
+
"we would compute the weighted sum. Tasks such as this\n",
|
2781 |
+
"can often be accomplished using the `zip()` function that\n",
|
2782 |
+
"loops over a sequence of tuples."
|
2783 |
+
]
|
2784 |
+
},
|
2785 |
+
{
|
2786 |
+
"cell_type": "code",
|
2787 |
+
"execution_count": null,
|
2788 |
+
"id": "ee827a53",
|
2789 |
+
"metadata": {
|
2790 |
+
"execution": {}
|
2791 |
+
},
|
2792 |
+
"outputs": [],
|
2793 |
+
"source": [
|
2794 |
+
"total = 0\n",
|
2795 |
+
"for value, weight in zip([2,3,19],\n",
|
2796 |
+
" [0.2,0.3,0.5]):\n",
|
2797 |
+
" total += weight * value\n",
|
2798 |
+
"print('Weighted average is: {0}'.format(total))\n"
|
2799 |
+
]
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"cell_type": "markdown",
|
2803 |
+
"id": "dec18466",
|
2804 |
+
"metadata": {},
|
2805 |
+
"source": [
|
2806 |
+
"### String Formatting\n",
|
2807 |
+
"In the code chunk above we also printed a string\n",
|
2808 |
+
"displaying the total. However, the object `total`\n",
|
2809 |
+
"is an integer and not a string.\n",
|
2810 |
+
"Inserting the value of something into\n",
|
2811 |
+
"a string is a common task, made\n",
|
2812 |
+
"simple using\n",
|
2813 |
+
"some of the powerful string formatting\n",
|
2814 |
+
"tools in `Python`.\n",
|
2815 |
+
"Many data cleaning tasks involve\n",
|
2816 |
+
"manipulating and programmatically\n",
|
2817 |
+
"producing strings.\n",
|
2818 |
+
"\n",
|
2819 |
+
"For example we may want to loop over the columns of a data frame and\n",
|
2820 |
+
"print the percent missing in each column.\n",
|
2821 |
+
"Let’s create a data frame `D` with columns in which 20% of the entries are missing i.e. set\n",
|
2822 |
+
"to `np.nan`. We’ll create the\n",
|
2823 |
+
"values in `D` from a normal distribution with mean 0 and variance 1 using `rng.standard_normal()`\n",
|
2824 |
+
"and then overwrite some random entries using `rng.choice()`."
|
2825 |
+
]
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"cell_type": "code",
|
2829 |
+
"execution_count": null,
|
2830 |
+
"id": "3a097fbc",
|
2831 |
+
"metadata": {
|
2832 |
+
"execution": {},
|
2833 |
+
"lines_to_next_cell": 2
|
2834 |
+
},
|
2835 |
+
"outputs": [],
|
2836 |
+
"source": [
|
2837 |
+
"rng = np.random.default_rng(1)\n",
|
2838 |
+
"A = rng.standard_normal((127, 5))\n",
|
2839 |
+
"M = rng.choice([0, np.nan], p=[0.8,0.2], size=A.shape)\n",
|
2840 |
+
"A += M\n",
|
2841 |
+
"D = pd.DataFrame(A, columns=['food',\n",
|
2842 |
+
" 'bar',\n",
|
2843 |
+
" 'pickle',\n",
|
2844 |
+
" 'snack',\n",
|
2845 |
+
" 'popcorn'])\n",
|
2846 |
+
"D[:3]\n"
|
2847 |
+
]
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"cell_type": "code",
|
2851 |
+
"execution_count": null,
|
2852 |
+
"id": "e064e170",
|
2853 |
+
"metadata": {
|
2854 |
+
"execution": {},
|
2855 |
+
"lines_to_next_cell": 0
|
2856 |
+
},
|
2857 |
+
"outputs": [],
|
2858 |
+
"source": [
|
2859 |
+
"for col in D.columns:\n",
|
2860 |
+
" template = 'Column \"{0}\" has {1:.2%} missing values'\n",
|
2861 |
+
" print(template.format(col,\n",
|
2862 |
+
" np.isnan(D[col]).mean()))\n"
|
2863 |
+
]
|
2864 |
+
},
|
2865 |
+
{
|
2866 |
+
"cell_type": "markdown",
|
2867 |
+
"id": "7a3e4dd8",
|
2868 |
+
"metadata": {},
|
2869 |
+
"source": [
|
2870 |
+
"We see that the `template.format()` method expects two arguments `{0}`\n",
|
2871 |
+
"and `{1:.2%}`, and the latter includes some formatting\n",
|
2872 |
+
"information. In particular, it specifies that the second argument should be expressed as a percent with two decimal digits.\n",
|
2873 |
+
"\n",
|
2874 |
+
"The reference\n",
|
2875 |
+
"[docs.python.org/3/library/string.html](https://docs.python.org/3/library/string.html)\n",
|
2876 |
+
"includes many helpful and more complex examples."
|
2877 |
+
]
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"cell_type": "markdown",
|
2881 |
+
"id": "d8fd496a",
|
2882 |
+
"metadata": {},
|
2883 |
+
"source": [
|
2884 |
+
"## Additional Graphical and Numerical Summaries\n",
|
2885 |
+
"We can use the `ax.plot()` or `ax.scatter()` functions to display the quantitative variables. However, simply typing the variable names will produce an error message,\n",
|
2886 |
+
"because `Python` does not know to look in the `Auto` data set for those variables."
|
2887 |
+
]
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"cell_type": "code",
|
2891 |
+
"execution_count": null,
|
2892 |
+
"id": "c915ca52",
|
2893 |
+
"metadata": {
|
2894 |
+
"execution": {},
|
2895 |
+
"lines_to_next_cell": 0
|
2896 |
+
},
|
2897 |
+
"outputs": [],
|
2898 |
+
"source": [
|
2899 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
2900 |
+
"ax.plot(horsepower, mpg, 'o');"
|
2901 |
+
]
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"cell_type": "markdown",
|
2905 |
+
"id": "63d47021",
|
2906 |
+
"metadata": {},
|
2907 |
+
"source": [
|
2908 |
+
"We can address this by accessing the columns directly:"
|
2909 |
+
]
|
2910 |
+
},
|
2911 |
+
{
|
2912 |
+
"cell_type": "code",
|
2913 |
+
"execution_count": null,
|
2914 |
+
"id": "65cd6d02",
|
2915 |
+
"metadata": {
|
2916 |
+
"execution": {},
|
2917 |
+
"lines_to_next_cell": 0
|
2918 |
+
},
|
2919 |
+
"outputs": [],
|
2920 |
+
"source": [
|
2921 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
2922 |
+
"ax.plot(Auto['horsepower'], Auto['mpg'], 'o');\n"
|
2923 |
+
]
|
2924 |
+
},
|
2925 |
+
{
|
2926 |
+
"cell_type": "markdown",
|
2927 |
+
"id": "726836f0",
|
2928 |
+
"metadata": {},
|
2929 |
+
"source": [
|
2930 |
+
"Alternatively, we can use the `plot()` method with the call `Auto.plot()`.\n",
|
2931 |
+
"Using this method,\n",
|
2932 |
+
"the variables can be accessed by name.\n",
|
2933 |
+
"The plot methods of a data frame return a familiar object:\n",
|
2934 |
+
"an axes. We can use it to update the plot as we did previously: "
|
2935 |
+
]
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"cell_type": "code",
|
2939 |
+
"execution_count": null,
|
2940 |
+
"id": "76b5c0b1",
|
2941 |
+
"metadata": {
|
2942 |
+
"execution": {},
|
2943 |
+
"lines_to_next_cell": 0
|
2944 |
+
},
|
2945 |
+
"outputs": [],
|
2946 |
+
"source": [
|
2947 |
+
"ax = Auto.plot.scatter('horsepower', 'mpg')\n",
|
2948 |
+
"ax.set_title('Horsepower vs. MPG');"
|
2949 |
+
]
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"cell_type": "markdown",
|
2953 |
+
"id": "69c46251",
|
2954 |
+
"metadata": {},
|
2955 |
+
"source": [
|
2956 |
+
"If we want to save\n",
|
2957 |
+
"the figure that contains a given axes, we can find the relevant figure\n",
|
2958 |
+
"by accessing the `figure` attribute:"
|
2959 |
+
]
|
2960 |
+
},
|
2961 |
+
{
|
2962 |
+
"cell_type": "code",
|
2963 |
+
"execution_count": null,
|
2964 |
+
"id": "183a2c2b",
|
2965 |
+
"metadata": {
|
2966 |
+
"execution": {}
|
2967 |
+
},
|
2968 |
+
"outputs": [],
|
2969 |
+
"source": [
|
2970 |
+
"fig = ax.figure\n",
|
2971 |
+
"fig.savefig('horsepower_mpg.png');"
|
2972 |
+
]
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"cell_type": "markdown",
|
2976 |
+
"id": "6f10cb46",
|
2977 |
+
"metadata": {},
|
2978 |
+
"source": [
|
2979 |
+
"We can further instruct the data frame to plot to a particular axes object. In this\n",
|
2980 |
+
"case the corresponding `plot()` method will return the\n",
|
2981 |
+
"modified axes we passed in as an argument. Note that\n",
|
2982 |
+
"when we request a one-dimensional grid of plots, the object `axes` is similarly\n",
|
2983 |
+
"one-dimensional. We place our scatter plot in the middle plot of a row of three plots\n",
|
2984 |
+
"within a figure."
|
2985 |
+
]
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"cell_type": "code",
|
2989 |
+
"execution_count": null,
|
2990 |
+
"id": "75fbb981",
|
2991 |
+
"metadata": {
|
2992 |
+
"execution": {}
|
2993 |
+
},
|
2994 |
+
"outputs": [],
|
2995 |
+
"source": [
|
2996 |
+
"fig, axes = subplots(ncols=3, figsize=(15, 5))\n",
|
2997 |
+
"Auto.plot.scatter('horsepower', 'mpg', ax=axes[1]);\n"
|
2998 |
+
]
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"cell_type": "markdown",
|
3002 |
+
"id": "53ffc0da",
|
3003 |
+
"metadata": {},
|
3004 |
+
"source": [
|
3005 |
+
"Note also that the columns of a data frame can be accessed as attributes: try typing in `Auto.horsepower`. "
|
3006 |
+
]
|
3007 |
+
},
|
3008 |
+
{
|
3009 |
+
"cell_type": "markdown",
|
3010 |
+
"id": "1c4705e0",
|
3011 |
+
"metadata": {},
|
3012 |
+
"source": [
|
3013 |
+
"We now consider the `cylinders` variable. Typing in `Auto.cylinders.dtype` reveals that it is being treated as a quantitative variable. \n",
|
3014 |
+
"However, since there is only a small number of possible values for this variable, we may wish to treat it as \n",
|
3015 |
+
" qualitative. Below, we replace\n",
|
3016 |
+
"the `cylinders` column with a categorical version of `Auto.cylinders`. The function `pd.Series()` owes its name to the fact that `pandas` is often used in time series applications."
|
3017 |
+
]
|
3018 |
+
},
|
3019 |
+
{
|
3020 |
+
"cell_type": "code",
|
3021 |
+
"execution_count": null,
|
3022 |
+
"id": "55b3a1cc",
|
3023 |
+
"metadata": {
|
3024 |
+
"execution": {},
|
3025 |
+
"lines_to_next_cell": 0
|
3026 |
+
},
|
3027 |
+
"outputs": [],
|
3028 |
+
"source": [
|
3029 |
+
"Auto.cylinders = pd.Series(Auto.cylinders, dtype='category')\n",
|
3030 |
+
"Auto.cylinders.dtype\n"
|
3031 |
+
]
|
3032 |
+
},
|
3033 |
+
{
|
3034 |
+
"cell_type": "markdown",
|
3035 |
+
"id": "adc75408",
|
3036 |
+
"metadata": {},
|
3037 |
+
"source": [
|
3038 |
+
" Now that `cylinders` is qualitative, we can display it using\n",
|
3039 |
+
" the `boxplot()` method."
|
3040 |
+
]
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"cell_type": "code",
|
3044 |
+
"execution_count": null,
|
3045 |
+
"id": "f3d88794",
|
3046 |
+
"metadata": {
|
3047 |
+
"execution": {}
|
3048 |
+
},
|
3049 |
+
"outputs": [],
|
3050 |
+
"source": [
|
3051 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
3052 |
+
"Auto.boxplot('mpg', by='cylinders', ax=ax);\n"
|
3053 |
+
]
|
3054 |
+
},
|
3055 |
+
{
|
3056 |
+
"cell_type": "markdown",
|
3057 |
+
"id": "62d6582f",
|
3058 |
+
"metadata": {},
|
3059 |
+
"source": [
|
3060 |
+
"The `hist()` method can be used to plot a *histogram*."
|
3061 |
+
]
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"cell_type": "code",
|
3065 |
+
"execution_count": null,
|
3066 |
+
"id": "eea49f5b",
|
3067 |
+
"metadata": {
|
3068 |
+
"execution": {},
|
3069 |
+
"lines_to_next_cell": 0
|
3070 |
+
},
|
3071 |
+
"outputs": [],
|
3072 |
+
"source": [
|
3073 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
3074 |
+
"Auto.hist('mpg', ax=ax);\n"
|
3075 |
+
]
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"cell_type": "markdown",
|
3079 |
+
"id": "c5a5933c",
|
3080 |
+
"metadata": {},
|
3081 |
+
"source": [
|
3082 |
+
"The color of the bars and the number of bins can be changed:"
|
3083 |
+
]
|
3084 |
+
},
|
3085 |
+
{
|
3086 |
+
"cell_type": "code",
|
3087 |
+
"execution_count": null,
|
3088 |
+
"id": "d5bcfff8",
|
3089 |
+
"metadata": {
|
3090 |
+
"execution": {},
|
3091 |
+
"lines_to_next_cell": 0
|
3092 |
+
},
|
3093 |
+
"outputs": [],
|
3094 |
+
"source": [
|
3095 |
+
"fig, ax = subplots(figsize=(8, 8))\n",
|
3096 |
+
"Auto.hist('mpg', color='red', bins=12, ax=ax);\n"
|
3097 |
+
]
|
3098 |
+
},
|
3099 |
+
{
|
3100 |
+
"cell_type": "markdown",
|
3101 |
+
"id": "60c36b6c",
|
3102 |
+
"metadata": {},
|
3103 |
+
"source": [
|
3104 |
+
" See `Auto.hist?` for more plotting\n",
|
3105 |
+
"options.\n",
|
3106 |
+
" \n",
|
3107 |
+
"We can use the `pd.plotting.scatter_matrix()` function to create a *scatterplot matrix* to visualize all of the pairwise relationships between the columns in\n",
|
3108 |
+
"a data frame."
|
3109 |
+
]
|
3110 |
+
},
|
3111 |
+
{
|
3112 |
+
"cell_type": "code",
|
3113 |
+
"execution_count": null,
|
3114 |
+
"id": "edb66cae",
|
3115 |
+
"metadata": {
|
3116 |
+
"execution": {},
|
3117 |
+
"lines_to_next_cell": 0
|
3118 |
+
},
|
3119 |
+
"outputs": [],
|
3120 |
+
"source": [
|
3121 |
+
"pd.plotting.scatter_matrix(Auto);\n"
|
3122 |
+
]
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"cell_type": "markdown",
|
3126 |
+
"id": "0b162bd9",
|
3127 |
+
"metadata": {},
|
3128 |
+
"source": [
|
3129 |
+
" We can also produce scatterplots\n",
|
3130 |
+
"for a subset of the variables."
|
3131 |
+
]
|
3132 |
+
},
|
3133 |
+
{
|
3134 |
+
"cell_type": "code",
|
3135 |
+
"execution_count": null,
|
3136 |
+
"id": "4f5d25d9",
|
3137 |
+
"metadata": {
|
3138 |
+
"execution": {},
|
3139 |
+
"lines_to_next_cell": 0
|
3140 |
+
},
|
3141 |
+
"outputs": [],
|
3142 |
+
"source": [
|
3143 |
+
"pd.plotting.scatter_matrix(Auto[['mpg',\n",
|
3144 |
+
" 'displacement',\n",
|
3145 |
+
" 'weight']]);\n"
|
3146 |
+
]
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"cell_type": "markdown",
|
3150 |
+
"id": "8cae5dfc",
|
3151 |
+
"metadata": {},
|
3152 |
+
"source": [
|
3153 |
+
"The `describe()` method produces a numerical summary of each column in a data frame."
|
3154 |
+
]
|
3155 |
+
},
|
3156 |
+
{
|
3157 |
+
"cell_type": "code",
|
3158 |
+
"execution_count": null,
|
3159 |
+
"id": "ce7b23e2",
|
3160 |
+
"metadata": {
|
3161 |
+
"execution": {},
|
3162 |
+
"lines_to_next_cell": 0
|
3163 |
+
},
|
3164 |
+
"outputs": [],
|
3165 |
+
"source": [
|
3166 |
+
"Auto[['mpg', 'weight']].describe()\n"
|
3167 |
+
]
|
3168 |
+
},
|
3169 |
+
{
|
3170 |
+
"cell_type": "markdown",
|
3171 |
+
"id": "d5042294",
|
3172 |
+
"metadata": {},
|
3173 |
+
"source": [
|
3174 |
+
"We can also produce a summary of just a single column."
|
3175 |
+
]
|
3176 |
+
},
|
3177 |
+
{
|
3178 |
+
"cell_type": "code",
|
3179 |
+
"execution_count": null,
|
3180 |
+
"id": "a6545d2f",
|
3181 |
+
"metadata": {
|
3182 |
+
"execution": {},
|
3183 |
+
"lines_to_next_cell": 0
|
3184 |
+
},
|
3185 |
+
"outputs": [],
|
3186 |
+
"source": [
|
3187 |
+
"Auto['cylinders'].describe()\n",
|
3188 |
+
"Auto['mpg'].describe()\n"
|
3189 |
+
]
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"cell_type": "markdown",
|
3193 |
+
"id": "c2ea7f81",
|
3194 |
+
"metadata": {},
|
3195 |
+
"source": [
|
3196 |
+
"To exit `Jupyter`, select `File / Close and Halt`.\n",
|
3197 |
+
"\n",
|
3198 |
+
" \n",
|
3199 |
+
"\n"
|
3200 |
+
]
|
3201 |
+
}
|
3202 |
+
],
|
3203 |
+
"metadata": {
|
3204 |
+
"jupytext": {
|
3205 |
+
"cell_metadata_filter": "-all",
|
3206 |
+
"formats": "Rmd,ipynb",
|
3207 |
+
"main_language": "python"
|
3208 |
+
},
|
3209 |
+
"kernelspec": {
|
3210 |
+
"display_name": "Python 3 (ipykernel)",
|
3211 |
+
"language": "python",
|
3212 |
+
"name": "python3"
|
3213 |
+
},
|
3214 |
+
"language_info": {
|
3215 |
+
"codemirror_mode": {
|
3216 |
+
"name": "ipython",
|
3217 |
+
"version": 3
|
3218 |
+
},
|
3219 |
+
"file_extension": ".py",
|
3220 |
+
"mimetype": "text/x-python",
|
3221 |
+
"name": "python",
|
3222 |
+
"nbconvert_exporter": "python",
|
3223 |
+
"pygments_lexer": "ipython3",
|
3224 |
+
"version": "3.10.4"
|
3225 |
+
}
|
3226 |
+
},
|
3227 |
+
"nbformat": 4,
|
3228 |
+
"nbformat_minor": 5
|
3229 |
+
}
|
Reference files/Week2_ref/Lecture_1_basics.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app/__pycache__/main.cpython-311.pyc
CHANGED
Binary files a/app/__pycache__/main.cpython-311.pyc and b/app/__pycache__/main.cpython-311.pyc differ
|
|
app/components/__pycache__/login.cpython-311.pyc
CHANGED
Binary files a/app/components/__pycache__/login.cpython-311.pyc and b/app/components/__pycache__/login.cpython-311.pyc differ
|
|
app/components/login.py
CHANGED
@@ -5,7 +5,11 @@ def login():
|
|
5 |
Display a login form and return True if login is successful, False otherwise.
|
6 |
"""
|
7 |
st.title("Login to Data Science Course App")
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
# Create a form for login
|
10 |
with st.form("login_form"):
|
11 |
username = st.text_input("Username")
|
@@ -14,7 +18,7 @@ def login():
|
|
14 |
|
15 |
if submit_button:
|
16 |
# Check credentials (test account)
|
17 |
-
if username
|
18 |
# Store login state in session
|
19 |
st.session_state.logged_in = True
|
20 |
st.session_state.username = username
|
|
|
5 |
Display a login form and return True if login is successful, False otherwise.
|
6 |
"""
|
7 |
st.title("Login to Data Science Course App")
|
8 |
+
|
9 |
+
#usernames
|
10 |
+
usernames = ["admin", "student", "manxiii"]
|
11 |
+
passwords = ["admin", "123", "manxi123"]
|
12 |
+
|
13 |
# Create a form for login
|
14 |
with st.form("login_form"):
|
15 |
username = st.text_input("Username")
|
|
|
18 |
|
19 |
if submit_button:
|
20 |
# Check credentials (test account)
|
21 |
+
if username in usernames and password in passwords:
|
22 |
# Store login state in session
|
23 |
st.session_state.logged_in = True
|
24 |
st.session_state.username = username
|
app/main.py
CHANGED
@@ -12,6 +12,10 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
12 |
# Import the login component
|
13 |
from app.components.login import login
|
14 |
|
|
|
|
|
|
|
|
|
15 |
# Page configuration
|
16 |
st.set_page_config(
|
17 |
page_title="Data Science Course App",
|
@@ -101,6 +105,11 @@ def sidebar_navigation():
|
|
101 |
if st.session_state.logged_in:
|
102 |
st.write(f"Welcome, {st.session_state.username}!")
|
103 |
|
|
|
|
|
|
|
|
|
|
|
104 |
# Logout button
|
105 |
if st.button("Logout"):
|
106 |
st.session_state.logged_in = False
|
@@ -120,156 +129,15 @@ def sidebar_navigation():
|
|
120 |
st.rerun()
|
121 |
|
122 |
def show_week_content():
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
This week, you'll learn how to:
|
127 |
-
- Select a suitable research topic
|
128 |
-
- Conduct a literature review
|
129 |
-
- Define your research objectives
|
130 |
-
- Create a research proposal
|
131 |
-
""")
|
132 |
-
|
133 |
-
# Topic Selection Section
|
134 |
-
st.header("1. Topic Selection")
|
135 |
-
st.markdown("""
|
136 |
-
### Guidelines for Selecting Your Research Topic:
|
137 |
-
- Choose a topic that interests you
|
138 |
-
- Ensure sufficient data availability
|
139 |
-
- Consider the scope and complexity
|
140 |
-
- Check for existing research gaps
|
141 |
-
""")
|
142 |
-
|
143 |
-
# Interactive Topic Selection
|
144 |
-
st.subheader("Topic Selection Form")
|
145 |
-
with st.form("topic_form"):
|
146 |
-
research_area = st.selectbox(
|
147 |
-
"Select your research area",
|
148 |
-
["Computer Vision", "NLP", "Time Series", "Recommendation Systems", "Other"]
|
149 |
-
)
|
150 |
-
|
151 |
-
topic = st.text_input("Proposed Research Topic")
|
152 |
-
problem_statement = st.text_area("Brief Problem Statement")
|
153 |
-
motivation = st.text_area("Why is this research important?")
|
154 |
-
|
155 |
-
submitted = st.form_submit_button("Submit Topic")
|
156 |
-
|
157 |
-
if submitted:
|
158 |
-
st.success("Topic submitted successfully! We'll review and provide feedback.")
|
159 |
-
|
160 |
-
# Linear Regression Visualization
|
161 |
-
st.header("2. Linear Regression Demo")
|
162 |
-
st.markdown("""
|
163 |
-
### Understanding Linear Regression
|
164 |
-
|
165 |
-
Linear regression is a fundamental machine learning algorithm that models the relationship between a dependent variable and one or more independent variables.
|
166 |
-
Below is an interactive demonstration of simple linear regression.
|
167 |
-
""")
|
168 |
-
|
169 |
-
# Create interactive controls
|
170 |
-
col1, col2 = st.columns(2)
|
171 |
-
with col1:
|
172 |
-
n_points = st.slider("Number of data points", 10, 100, 50)
|
173 |
-
noise = st.slider("Noise level", 0.1, 2.0, 0.5)
|
174 |
-
with col2:
|
175 |
-
slope = st.slider("True slope", -2.0, 2.0, 1.0)
|
176 |
-
intercept = st.slider("True intercept", -5.0, 5.0, 0.0)
|
177 |
-
|
178 |
-
# Generate synthetic data
|
179 |
-
np.random.seed(42)
|
180 |
-
X = np.random.rand(n_points) * 10
|
181 |
-
y = slope * X + intercept + np.random.normal(0, noise, n_points)
|
182 |
-
|
183 |
-
# Fit linear regression
|
184 |
-
X_reshaped = X.reshape(-1, 1)
|
185 |
-
model = LinearRegression()
|
186 |
-
model.fit(X_reshaped, y)
|
187 |
-
y_pred = model.predict(X_reshaped)
|
188 |
-
|
189 |
-
# Create the plot
|
190 |
-
fig = go.Figure()
|
191 |
-
|
192 |
-
# Add scatter plot of actual data
|
193 |
-
fig.add_trace(go.Scatter(
|
194 |
-
x=X,
|
195 |
-
y=y,
|
196 |
-
mode='markers',
|
197 |
-
name='Actual Data',
|
198 |
-
marker=dict(color='blue')
|
199 |
-
))
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
line=dict(color='red')
|
208 |
-
))
|
209 |
-
|
210 |
-
# Update layout
|
211 |
-
fig.update_layout(
|
212 |
-
title='Linear Regression Visualization',
|
213 |
-
xaxis_title='X',
|
214 |
-
yaxis_title='Y',
|
215 |
-
showlegend=True,
|
216 |
-
height=500
|
217 |
-
)
|
218 |
-
|
219 |
-
# Display the plot
|
220 |
-
st.plotly_chart(fig, use_container_width=True)
|
221 |
-
|
222 |
-
# Display regression coefficients
|
223 |
-
st.markdown(f"""
|
224 |
-
### Regression Results
|
225 |
-
- Estimated slope: {model.coef_[0]:.2f}
|
226 |
-
- Estimated intercept: {model.intercept_:.2f}
|
227 |
-
- R² score: {model.score(X_reshaped, y):.2f}
|
228 |
-
""")
|
229 |
-
|
230 |
-
# Literature Review Section
|
231 |
-
st.header("3. Literature Review")
|
232 |
-
st.markdown("""
|
233 |
-
### Steps for Conducting Literature Review:
|
234 |
-
1. Search for relevant papers
|
235 |
-
2. Read and analyze key papers
|
236 |
-
3. Identify research gaps
|
237 |
-
4. Document your findings
|
238 |
-
""")
|
239 |
-
|
240 |
-
# Literature Review Template
|
241 |
-
st.subheader("Literature Review Template")
|
242 |
-
with st.expander("Download Template"):
|
243 |
-
st.download_button(
|
244 |
-
label="Download Literature Review Template",
|
245 |
-
data="Literature Review Template\n\n1. Introduction\n2. Related Work\n3. Methodology\n4. Results\n5. Discussion\n6. Conclusion",
|
246 |
-
file_name="literature_review_template.txt",
|
247 |
-
mime="text/plain"
|
248 |
-
)
|
249 |
-
|
250 |
-
# Weekly Assignment
|
251 |
-
st.header("Weekly Assignment")
|
252 |
-
st.markdown("""
|
253 |
-
### Assignment 1: Research Proposal
|
254 |
-
1. Select your research topic
|
255 |
-
2. Write a brief problem statement
|
256 |
-
3. Conduct initial literature review
|
257 |
-
4. Submit your research proposal
|
258 |
-
|
259 |
-
**Due Date:** End of Week 1
|
260 |
-
""")
|
261 |
-
|
262 |
-
# Assignment Submission
|
263 |
-
st.subheader("Submit Your Assignment")
|
264 |
-
with st.form("assignment_form"):
|
265 |
-
proposal_file = st.file_uploader("Upload your research proposal (PDF or DOC)")
|
266 |
-
comments = st.text_area("Additional comments or questions")
|
267 |
-
|
268 |
-
if st.form_submit_button("Submit Assignment"):
|
269 |
-
if proposal_file is not None:
|
270 |
-
st.success("Assignment submitted successfully!")
|
271 |
-
else:
|
272 |
-
st.error("Please upload your research proposal.")
|
273 |
|
274 |
# Main content
|
275 |
def main():
|
@@ -280,33 +148,14 @@ def main():
|
|
280 |
return
|
281 |
|
282 |
# User is logged in, show course content
|
283 |
-
if st.session_state.current_week
|
284 |
show_week_content()
|
285 |
else:
|
286 |
st.title("Data Science Research Paper Course")
|
287 |
st.markdown("""
|
288 |
## Welcome to the Data Science Research Paper Course! 📚
|
289 |
|
290 |
-
This
|
291 |
-
Each week, you'll learn new concepts and complete tasks that build upon each other.
|
292 |
-
|
293 |
-
### Getting Started
|
294 |
-
1. Use the sidebar to navigate between weeks
|
295 |
-
2. Complete the weekly tasks and assignments
|
296 |
-
3. Track your progress using the progress bar
|
297 |
-
4. Submit your work for feedback
|
298 |
-
|
299 |
-
### Course Overview
|
300 |
-
- Week 1: Research Topic Selection and Literature Review
|
301 |
-
- Week 2: Data Collection and Preprocessing
|
302 |
-
- Week 3: Exploratory Data Analysis
|
303 |
-
- Week 4: Feature Engineering
|
304 |
-
- Week 5: Model Selection and Baseline
|
305 |
-
- Week 6: Model Training and Optimization
|
306 |
-
- Week 7: Model Evaluation
|
307 |
-
- Week 8: Results Analysis
|
308 |
-
- Week 9: Paper Writing
|
309 |
-
- Week 10: Final Review and Submission
|
310 |
""")
|
311 |
|
312 |
if __name__ == "__main__":
|
|
|
12 |
# Import the login component
|
13 |
from app.components.login import login
|
14 |
|
15 |
+
# Import week pages
|
16 |
+
from app.pages import week_1
|
17 |
+
from app.pages import week_2
|
18 |
+
|
19 |
# Page configuration
|
20 |
st.set_page_config(
|
21 |
page_title="Data Science Course App",
|
|
|
105 |
if st.session_state.logged_in:
|
106 |
st.write(f"Welcome, {st.session_state.username}!")
|
107 |
|
108 |
+
# Debug button to show current week
|
109 |
+
if st.session_state.username == "admin":
|
110 |
+
if st.button("Debug: Show Current Week"):
|
111 |
+
st.write(f"Current week: {st.session_state.current_week}")
|
112 |
+
|
113 |
# Logout button
|
114 |
if st.button("Logout"):
|
115 |
st.session_state.logged_in = False
|
|
|
129 |
st.rerun()
|
130 |
|
131 |
def show_week_content():
|
132 |
+
# Debug print to show current week
|
133 |
+
st.write(f"Debug: Current week is {st.session_state.current_week}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
if st.session_state.current_week == 1:
|
136 |
+
week_1.show()
|
137 |
+
elif st.session_state.current_week == 2:
|
138 |
+
week_2.show()
|
139 |
+
else:
|
140 |
+
st.warning("Content for this week is not yet available.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
# Main content
|
143 |
def main():
|
|
|
148 |
return
|
149 |
|
150 |
# User is logged in, show course content
|
151 |
+
if st.session_state.current_week in [1, 2]:
|
152 |
show_week_content()
|
153 |
else:
|
154 |
st.title("Data Science Research Paper Course")
|
155 |
st.markdown("""
|
156 |
## Welcome to the Data Science Research Paper Course! 📚
|
157 |
|
158 |
+
This section has not bee released yet.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
""")
|
160 |
|
161 |
if __name__ == "__main__":
|
app/pages/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app/pages/1_Week_1.py
DELETED
@@ -1,168 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import numpy as np
|
3 |
-
import plotly.graph_objects as go
|
4 |
-
from sklearn.linear_model import LinearRegression
|
5 |
-
|
6 |
-
# Page configuration
|
7 |
-
st.set_page_config(
|
8 |
-
page_title="Week 1 - Research Topic Selection",
|
9 |
-
page_icon="📚",
|
10 |
-
layout="wide"
|
11 |
-
)
|
12 |
-
|
13 |
-
# Check if user is logged in
|
14 |
-
if not st.session_state.get("logged_in", False):
|
15 |
-
st.warning("Please log in to access this page.")
|
16 |
-
st.stop()
|
17 |
-
|
18 |
-
# Main content
|
19 |
-
st.markdown("""
|
20 |
-
## Week 1: Research Topic Selection and Literature Review
|
21 |
-
|
22 |
-
This week, you'll learn how to:
|
23 |
-
- Select a suitable research topic
|
24 |
-
- Conduct a literature review
|
25 |
-
- Define your research objectives
|
26 |
-
- Create a research proposal
|
27 |
-
""")
|
28 |
-
|
29 |
-
# Topic Selection Section
|
30 |
-
st.header("1. Topic Selection")
|
31 |
-
st.markdown("""
|
32 |
-
### Guidelines for Selecting Your Research Topic:
|
33 |
-
- Choose a topic that interests you
|
34 |
-
- Ensure sufficient data availability
|
35 |
-
- Consider the scope and complexity
|
36 |
-
- Check for existing research gaps
|
37 |
-
""")
|
38 |
-
|
39 |
-
# Interactive Topic Selection
|
40 |
-
st.subheader("Topic Selection Form")
|
41 |
-
with st.form("topic_form"):
|
42 |
-
research_area = st.selectbox(
|
43 |
-
"Select your research area",
|
44 |
-
["Computer Vision", "NLP", "Time Series", "Recommendation Systems", "Other"]
|
45 |
-
)
|
46 |
-
|
47 |
-
topic = st.text_input("Proposed Research Topic")
|
48 |
-
problem_statement = st.text_area("Brief Problem Statement")
|
49 |
-
motivation = st.text_area("Why is this research important?")
|
50 |
-
|
51 |
-
submitted = st.form_submit_button("Submit Topic")
|
52 |
-
|
53 |
-
if submitted:
|
54 |
-
st.success("Topic submitted successfully! We'll review and provide feedback.")
|
55 |
-
|
56 |
-
# Linear Regression Visualization
|
57 |
-
st.header("2. Linear Regression Demo")
|
58 |
-
st.markdown("""
|
59 |
-
### Understanding Linear Regression
|
60 |
-
|
61 |
-
Linear regression is a fundamental machine learning algorithm that models the relationship between a dependent variable and one or more independent variables.
|
62 |
-
Below is an interactive demonstration of simple linear regression.
|
63 |
-
""")
|
64 |
-
|
65 |
-
# Create interactive controls
|
66 |
-
col1, col2 = st.columns(2)
|
67 |
-
with col1:
|
68 |
-
n_points = st.slider("Number of data points", 10, 100, 50)
|
69 |
-
noise = st.slider("Noise level", 0.1, 2.0, 0.5)
|
70 |
-
with col2:
|
71 |
-
slope = st.slider("True slope", -2.0, 2.0, 1.0)
|
72 |
-
intercept = st.slider("True intercept", -5.0, 5.0, 0.0)
|
73 |
-
|
74 |
-
# Generate synthetic data
|
75 |
-
np.random.seed(42)
|
76 |
-
X = np.random.rand(n_points) * 10
|
77 |
-
y = slope * X + intercept + np.random.normal(0, noise, n_points)
|
78 |
-
|
79 |
-
# Fit linear regression
|
80 |
-
X_reshaped = X.reshape(-1, 1)
|
81 |
-
model = LinearRegression()
|
82 |
-
model.fit(X_reshaped, y)
|
83 |
-
y_pred = model.predict(X_reshaped)
|
84 |
-
|
85 |
-
# Create the plot
|
86 |
-
fig = go.Figure()
|
87 |
-
|
88 |
-
# Add scatter plot of actual data
|
89 |
-
fig.add_trace(go.Scatter(
|
90 |
-
x=X,
|
91 |
-
y=y,
|
92 |
-
mode='markers',
|
93 |
-
name='Actual Data',
|
94 |
-
marker=dict(color='blue')
|
95 |
-
))
|
96 |
-
|
97 |
-
# Add regression line
|
98 |
-
fig.add_trace(go.Scatter(
|
99 |
-
x=X,
|
100 |
-
y=y_pred,
|
101 |
-
mode='lines',
|
102 |
-
name='Regression Line',
|
103 |
-
line=dict(color='red')
|
104 |
-
))
|
105 |
-
|
106 |
-
# Update layout
|
107 |
-
fig.update_layout(
|
108 |
-
title='Linear Regression Visualization',
|
109 |
-
xaxis_title='X',
|
110 |
-
yaxis_title='Y',
|
111 |
-
showlegend=True,
|
112 |
-
height=500
|
113 |
-
)
|
114 |
-
|
115 |
-
# Display the plot
|
116 |
-
st.plotly_chart(fig, use_container_width=True)
|
117 |
-
|
118 |
-
# Display regression coefficients
|
119 |
-
st.markdown(f"""
|
120 |
-
### Regression Results
|
121 |
-
- Estimated slope: {model.coef_[0]:.2f}
|
122 |
-
- Estimated intercept: {model.intercept_:.2f}
|
123 |
-
- R² score: {model.score(X_reshaped, y):.2f}
|
124 |
-
""")
|
125 |
-
|
126 |
-
# Literature Review Section
|
127 |
-
st.header("3. Literature Review")
|
128 |
-
st.markdown("""
|
129 |
-
### Steps for Conducting Literature Review:
|
130 |
-
1. Search for relevant papers
|
131 |
-
2. Read and analyze key papers
|
132 |
-
3. Identify research gaps
|
133 |
-
4. Document your findings
|
134 |
-
""")
|
135 |
-
|
136 |
-
# Literature Review Template
|
137 |
-
st.subheader("Literature Review Template")
|
138 |
-
with st.expander("Download Template"):
|
139 |
-
st.download_button(
|
140 |
-
label="Download Literature Review Template",
|
141 |
-
data="Literature Review Template\n\n1. Introduction\n2. Related Work\n3. Methodology\n4. Results\n5. Discussion\n6. Conclusion",
|
142 |
-
file_name="literature_review_template.txt",
|
143 |
-
mime="text/plain"
|
144 |
-
)
|
145 |
-
|
146 |
-
# Weekly Assignment
|
147 |
-
st.header("Weekly Assignment")
|
148 |
-
st.markdown("""
|
149 |
-
### Assignment 1: Research Proposal
|
150 |
-
1. Select your research topic
|
151 |
-
2. Write a brief problem statement
|
152 |
-
3. Conduct initial literature review
|
153 |
-
4. Submit your research proposal
|
154 |
-
|
155 |
-
**Due Date:** End of Week 1
|
156 |
-
""")
|
157 |
-
|
158 |
-
# Assignment Submission
|
159 |
-
st.subheader("Submit Your Assignment")
|
160 |
-
with st.form("assignment_form"):
|
161 |
-
proposal_file = st.file_uploader("Upload your research proposal (PDF or DOC)")
|
162 |
-
comments = st.text_area("Additional comments or questions")
|
163 |
-
|
164 |
-
if st.form_submit_button("Submit Assignment"):
|
165 |
-
if proposal_file is not None:
|
166 |
-
st.success("Assignment submitted successfully!")
|
167 |
-
else:
|
168 |
-
st.error("Please upload your research proposal.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/pages/__pycache__/week_1.cpython-311.pyc
ADDED
Binary file (891 Bytes). View file
|
|
app/pages/__pycache__/week_2.cpython-311.pyc
ADDED
Binary file (10.5 kB). View file
|
|
app/pages/week_1.py
CHANGED
@@ -3,157 +3,16 @@ import numpy as np
|
|
3 |
import plotly.graph_objects as go
|
4 |
from sklearn.linear_model import LinearRegression
|
5 |
|
6 |
-
|
|
|
7 |
st.markdown("""
|
8 |
-
## Week 1
|
9 |
-
|
10 |
-
This week, you'll learn how to:
|
11 |
-
- Select a suitable research topic
|
12 |
-
- Conduct a literature review
|
13 |
-
- Define your research objectives
|
14 |
-
- Create a research proposal
|
15 |
""")
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
st.markdown("""
|
20 |
-
### Guidelines for Selecting Your Research Topic:
|
21 |
-
- Choose a topic that interests you
|
22 |
-
- Ensure sufficient data availability
|
23 |
-
- Consider the scope and complexity
|
24 |
-
- Check for existing research gaps
|
25 |
-
""")
|
26 |
-
|
27 |
-
# Interactive Topic Selection
|
28 |
-
st.subheader("Topic Selection Form")
|
29 |
-
with st.form("topic_form"):
|
30 |
-
research_area = st.selectbox(
|
31 |
-
"Select your research area",
|
32 |
-
["Computer Vision", "NLP", "Time Series", "Recommendation Systems", "Other"]
|
33 |
-
)
|
34 |
-
|
35 |
-
topic = st.text_input("Proposed Research Topic")
|
36 |
-
problem_statement = st.text_area("Brief Problem Statement")
|
37 |
-
motivation = st.text_area("Why is this research important?")
|
38 |
-
|
39 |
-
submitted = st.form_submit_button("Submit Topic")
|
40 |
-
|
41 |
-
if submitted:
|
42 |
-
st.success("Topic submitted successfully! We'll review and provide feedback.")
|
43 |
-
|
44 |
-
# Linear Regression Visualization
|
45 |
-
st.header("2. Linear Regression Demo")
|
46 |
-
st.markdown("""
|
47 |
-
### Understanding Linear Regression
|
48 |
-
|
49 |
-
Linear regression is a fundamental machine learning algorithm that models the relationship between a dependent variable and one or more independent variables.
|
50 |
-
Below is an interactive demonstration of simple linear regression.
|
51 |
-
""")
|
52 |
-
|
53 |
-
# Create interactive controls
|
54 |
-
col1, col2 = st.columns(2)
|
55 |
-
with col1:
|
56 |
-
n_points = st.slider("Number of data points", 10, 100, 50)
|
57 |
-
noise = st.slider("Noise level", 0.1, 2.0, 0.5)
|
58 |
-
with col2:
|
59 |
-
slope = st.slider("True slope", -2.0, 2.0, 1.0)
|
60 |
-
intercept = st.slider("True intercept", -5.0, 5.0, 0.0)
|
61 |
-
|
62 |
-
# Generate synthetic data
|
63 |
-
np.random.seed(42)
|
64 |
-
X = np.random.rand(n_points) * 10
|
65 |
-
y = slope * X + intercept + np.random.normal(0, noise, n_points)
|
66 |
-
|
67 |
-
# Fit linear regression
|
68 |
-
X_reshaped = X.reshape(-1, 1)
|
69 |
-
model = LinearRegression()
|
70 |
-
model.fit(X_reshaped, y)
|
71 |
-
y_pred = model.predict(X_reshaped)
|
72 |
-
|
73 |
-
# Create the plot
|
74 |
-
fig = go.Figure()
|
75 |
-
|
76 |
-
# Add scatter plot of actual data
|
77 |
-
fig.add_trace(go.Scatter(
|
78 |
-
x=X,
|
79 |
-
y=y,
|
80 |
-
mode='markers',
|
81 |
-
name='Actual Data',
|
82 |
-
marker=dict(color='blue')
|
83 |
-
))
|
84 |
-
|
85 |
-
# Add regression line
|
86 |
-
fig.add_trace(go.Scatter(
|
87 |
-
x=X,
|
88 |
-
y=y_pred,
|
89 |
-
mode='lines',
|
90 |
-
name='Regression Line',
|
91 |
-
line=dict(color='red')
|
92 |
-
))
|
93 |
-
|
94 |
-
# Update layout
|
95 |
-
fig.update_layout(
|
96 |
-
title='Linear Regression Visualization',
|
97 |
-
xaxis_title='X',
|
98 |
-
yaxis_title='Y',
|
99 |
-
showlegend=True,
|
100 |
-
height=500
|
101 |
-
)
|
102 |
-
|
103 |
-
# Display the plot
|
104 |
-
st.plotly_chart(fig, use_container_width=True)
|
105 |
-
|
106 |
-
# Display regression coefficients
|
107 |
-
st.markdown(f"""
|
108 |
-
### Regression Results
|
109 |
-
- Estimated slope: {model.coef_[0]:.2f}
|
110 |
-
- Estimated intercept: {model.intercept_:.2f}
|
111 |
-
- R² score: {model.score(X_reshaped, y):.2f}
|
112 |
-
""")
|
113 |
-
|
114 |
-
# Literature Review Section
|
115 |
-
st.header("3. Literature Review")
|
116 |
-
st.markdown("""
|
117 |
-
### Steps for Conducting Literature Review:
|
118 |
-
1. Search for relevant papers
|
119 |
-
2. Read and analyze key papers
|
120 |
-
3. Identify research gaps
|
121 |
-
4. Document your findings
|
122 |
-
""")
|
123 |
-
|
124 |
-
# Literature Review Template
|
125 |
-
st.subheader("Literature Review Template")
|
126 |
-
with st.expander("Download Template"):
|
127 |
-
st.download_button(
|
128 |
-
label="Download Literature Review Template",
|
129 |
-
data="Literature Review Template\n\n1. Introduction\n2. Related Work\n3. Methodology\n4. Results\n5. Discussion\n6. Conclusion",
|
130 |
-
file_name="literature_review_template.txt",
|
131 |
-
mime="text/plain"
|
132 |
-
)
|
133 |
-
|
134 |
-
# Weekly Assignment
|
135 |
-
st.header("Weekly Assignment")
|
136 |
st.markdown("""
|
137 |
-
|
138 |
-
1. Select your research topic
|
139 |
-
2. Write a brief problem statement
|
140 |
-
3. Conduct initial literature review
|
141 |
-
4. Submit your research proposal
|
142 |
-
|
143 |
-
**Due Date:** End of Week 1
|
144 |
""")
|
145 |
-
|
146 |
-
# Assignment Submission
|
147 |
-
st.subheader("Submit Your Assignment")
|
148 |
-
with st.form("assignment_form"):
|
149 |
-
proposal_file = st.file_uploader("Upload your research proposal (PDF or DOC)")
|
150 |
-
comments = st.text_area("Additional comments or questions")
|
151 |
-
|
152 |
-
if st.form_submit_button("Submit Assignment"):
|
153 |
-
if proposal_file is not None:
|
154 |
-
st.success("Assignment submitted successfully!")
|
155 |
-
else:
|
156 |
-
st.error("Please upload your research proposal.")
|
157 |
-
|
158 |
if __name__ == "__main__":
|
159 |
-
|
|
|
3 |
import plotly.graph_objects as go
|
4 |
from sklearn.linear_model import LinearRegression
|
5 |
|
6 |
+
# Week 1 content in person
|
7 |
+
def show():
|
8 |
st.markdown("""
|
9 |
+
## Week 1 content in person
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
""")
|
11 |
+
|
12 |
+
# Week 1 content online
|
13 |
+
def show():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
st.markdown("""
|
15 |
+
## Week 1 content not online yet
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
if __name__ == "__main__":
|
18 |
+
show()
|
app/pages/week_1_WIP.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from sklearn.linear_model import LinearRegression
|
5 |
+
|
6 |
+
def show():
|
7 |
+
st.markdown("""
|
8 |
+
## Week 1: Research Topic Selection and Literature Review
|
9 |
+
|
10 |
+
This week, you'll learn how to:
|
11 |
+
- Select a suitable research topic
|
12 |
+
- Conduct a literature review
|
13 |
+
- Define your research objectives
|
14 |
+
- Create a research proposal
|
15 |
+
""")
|
16 |
+
|
17 |
+
# Topic Selection Section
|
18 |
+
st.header("1. Topic Selection")
|
19 |
+
st.markdown("""
|
20 |
+
### Guidelines for Selecting Your Research Topic:
|
21 |
+
- Choose a topic that interests you
|
22 |
+
- Ensure sufficient data availability
|
23 |
+
- Consider the scope and complexity
|
24 |
+
- Check for existing research gaps
|
25 |
+
""")
|
26 |
+
|
27 |
+
# Interactive Topic Selection
|
28 |
+
st.subheader("Topic Selection Form")
|
29 |
+
with st.form("topic_form"):
|
30 |
+
research_area = st.selectbox(
|
31 |
+
"Select your research area",
|
32 |
+
["Computer Vision", "NLP", "Time Series", "Recommendation Systems", "Other"]
|
33 |
+
)
|
34 |
+
|
35 |
+
topic = st.text_input("Proposed Research Topic")
|
36 |
+
problem_statement = st.text_area("Brief Problem Statement")
|
37 |
+
motivation = st.text_area("Why is this research important?")
|
38 |
+
|
39 |
+
submitted = st.form_submit_button("Submit Topic")
|
40 |
+
|
41 |
+
if submitted:
|
42 |
+
st.success("Topic submitted successfully! We'll review and provide feedback.")
|
43 |
+
|
44 |
+
# Linear Regression Visualization
|
45 |
+
st.header("2. Linear Regression Demo")
|
46 |
+
st.markdown("""
|
47 |
+
### Understanding Linear Regression
|
48 |
+
|
49 |
+
Linear regression is a fundamental machine learning algorithm that models the relationship between a dependent variable and one or more independent variables.
|
50 |
+
Below is an interactive demonstration of simple linear regression.
|
51 |
+
""")
|
52 |
+
|
53 |
+
# Create interactive controls
|
54 |
+
col1, col2 = st.columns(2)
|
55 |
+
with col1:
|
56 |
+
n_points = st.slider("Number of data points", 10, 100, 50)
|
57 |
+
noise = st.slider("Noise level", 0.1, 2.0, 0.5)
|
58 |
+
with col2:
|
59 |
+
slope = st.slider("True slope", -2.0, 2.0, 1.0)
|
60 |
+
intercept = st.slider("True intercept", -5.0, 5.0, 0.0)
|
61 |
+
|
62 |
+
# Generate synthetic data
|
63 |
+
np.random.seed(42)
|
64 |
+
X = np.random.rand(n_points) * 10
|
65 |
+
y = slope * X + intercept + np.random.normal(0, noise, n_points)
|
66 |
+
|
67 |
+
# Fit linear regression
|
68 |
+
X_reshaped = X.reshape(-1, 1)
|
69 |
+
model = LinearRegression()
|
70 |
+
model.fit(X_reshaped, y)
|
71 |
+
y_pred = model.predict(X_reshaped)
|
72 |
+
|
73 |
+
# Create the plot
|
74 |
+
fig = go.Figure()
|
75 |
+
|
76 |
+
# Add scatter plot of actual data
|
77 |
+
fig.add_trace(go.Scatter(
|
78 |
+
x=X,
|
79 |
+
y=y,
|
80 |
+
mode='markers',
|
81 |
+
name='Actual Data',
|
82 |
+
marker=dict(color='blue')
|
83 |
+
))
|
84 |
+
|
85 |
+
# Add regression line
|
86 |
+
fig.add_trace(go.Scatter(
|
87 |
+
x=X,
|
88 |
+
y=y_pred,
|
89 |
+
mode='lines',
|
90 |
+
name='Regression Line',
|
91 |
+
line=dict(color='red')
|
92 |
+
))
|
93 |
+
|
94 |
+
# Update layout
|
95 |
+
fig.update_layout(
|
96 |
+
title='Linear Regression Visualization',
|
97 |
+
xaxis_title='X',
|
98 |
+
yaxis_title='Y',
|
99 |
+
showlegend=True,
|
100 |
+
height=500
|
101 |
+
)
|
102 |
+
|
103 |
+
# Display the plot
|
104 |
+
st.plotly_chart(fig, use_container_width=True)
|
105 |
+
|
106 |
+
# Display regression coefficients
|
107 |
+
st.markdown(f"""
|
108 |
+
### Regression Results
|
109 |
+
- Estimated slope: {model.coef_[0]:.2f}
|
110 |
+
- Estimated intercept: {model.intercept_:.2f}
|
111 |
+
- R² score: {model.score(X_reshaped, y):.2f}
|
112 |
+
""")
|
113 |
+
|
114 |
+
# Literature Review Section
|
115 |
+
st.header("3. Literature Review")
|
116 |
+
st.markdown("""
|
117 |
+
### Steps for Conducting Literature Review:
|
118 |
+
1. Search for relevant papers
|
119 |
+
2. Read and analyze key papers
|
120 |
+
3. Identify research gaps
|
121 |
+
4. Document your findings
|
122 |
+
""")
|
123 |
+
|
124 |
+
# Literature Review Template
|
125 |
+
st.subheader("Literature Review Template")
|
126 |
+
with st.expander("Download Template"):
|
127 |
+
st.download_button(
|
128 |
+
label="Download Literature Review Template",
|
129 |
+
data="Literature Review Template\n\n1. Introduction\n2. Related Work\n3. Methodology\n4. Results\n5. Discussion\n6. Conclusion",
|
130 |
+
file_name="literature_review_template.txt",
|
131 |
+
mime="text/plain"
|
132 |
+
)
|
133 |
+
|
134 |
+
# Weekly Assignment
|
135 |
+
st.header("Weekly Assignment")
|
136 |
+
st.markdown("""
|
137 |
+
### Assignment 1: Research Proposal
|
138 |
+
1. Select your research topic
|
139 |
+
2. Write a brief problem statement
|
140 |
+
3. Conduct initial literature review
|
141 |
+
4. Submit your research proposal
|
142 |
+
|
143 |
+
**Due Date:** End of Week 1
|
144 |
+
""")
|
145 |
+
|
146 |
+
# Assignment Submission
|
147 |
+
st.subheader("Submit Your Assignment")
|
148 |
+
with st.form("assignment_form"):
|
149 |
+
proposal_file = st.file_uploader("Upload your research proposal (PDF or DOC)")
|
150 |
+
comments = st.text_area("Additional comments or questions")
|
151 |
+
|
152 |
+
if st.form_submit_button("Submit Assignment"):
|
153 |
+
if proposal_file is not None:
|
154 |
+
st.success("Assignment submitted successfully!")
|
155 |
+
else:
|
156 |
+
st.error("Please upload your research proposal.")
|
157 |
+
|
158 |
+
if __name__ == "__main__":
|
159 |
+
show()
|
app/pages/week_2.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import io
|
5 |
+
import sys
|
6 |
+
import pandas as pd
|
7 |
+
from contextlib import redirect_stdout
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import seaborn as sns
|
10 |
+
|
11 |
+
# Initialize session state for notebook-like cells
|
12 |
+
if 'cells' not in st.session_state:
|
13 |
+
st.session_state.cells = []
|
14 |
+
if 'df' not in st.session_state:
|
15 |
+
st.session_state.df = None
|
16 |
+
|
17 |
+
def capture_output(code, df=None):
|
18 |
+
"""Helper function to capture print output"""
|
19 |
+
f = io.StringIO()
|
20 |
+
with redirect_stdout(f):
|
21 |
+
try:
|
22 |
+
# Create a dictionary of variables to use in exec
|
23 |
+
variables = {'pd': pd, 'np': np, 'plt': plt, 'sns': sns}
|
24 |
+
if df is not None:
|
25 |
+
variables['df'] = df
|
26 |
+
exec(code, variables)
|
27 |
+
except Exception as e:
|
28 |
+
return f"Error: {str(e)}"
|
29 |
+
return f.getvalue()
|
30 |
+
|
31 |
+
def show():
|
32 |
+
st.markdown("""
|
33 |
+
## Week 2: Python Basics - Part 1: Coding Exercises
|
34 |
+
|
35 |
+
In this first part, we'll learn some fundamental Python concepts through hands-on exercises:
|
36 |
+
- Importing libraries
|
37 |
+
- Using print statements
|
38 |
+
- Basic arithmetic operations
|
39 |
+
- Working with lists
|
40 |
+
""")
|
41 |
+
|
42 |
+
# Importing Libraries Section
|
43 |
+
st.header("1. Importing Libraries")
|
44 |
+
st.markdown("""
|
45 |
+
Python has a rich ecosystem of libraries. To use them, we need to import them first.
|
46 |
+
""")
|
47 |
+
|
48 |
+
with st.expander("Import Example"):
|
49 |
+
st.code("""
|
50 |
+
# Importing a library
|
51 |
+
import math
|
52 |
+
|
53 |
+
# Using a function from the library
|
54 |
+
print(math.sqrt(16)) # This will print 4.0
|
55 |
+
""", line_numbers=True)
|
56 |
+
|
57 |
+
# Interactive Import Exercise
|
58 |
+
st.subheader("Try it yourself!")
|
59 |
+
import_code = st.text_area("Try importing and using the math library:",
|
60 |
+
"import math\nprint(math.sqrt(25))",
|
61 |
+
height=100)
|
62 |
+
if st.button("Run Import Code"):
|
63 |
+
output = capture_output(import_code)
|
64 |
+
st.code(output, line_numbers=True)
|
65 |
+
|
66 |
+
# Print Statements Section
|
67 |
+
st.header("2. Print Statements")
|
68 |
+
st.markdown("""
|
69 |
+
The print() function is used to display output to the console.
|
70 |
+
""")
|
71 |
+
|
72 |
+
with st.expander("Print Examples"):
|
73 |
+
st.code("""
|
74 |
+
# Basic print
|
75 |
+
print("Hello, World!")
|
76 |
+
|
77 |
+
# Print with variables
|
78 |
+
name = "Alice"
|
79 |
+
print(f"Hello, {name}!")
|
80 |
+
|
81 |
+
# Print multiple items
|
82 |
+
print("The answer is:", 42)
|
83 |
+
""", line_numbers=True)
|
84 |
+
|
85 |
+
# Interactive Print Exercise
|
86 |
+
st.subheader("Try it yourself!")
|
87 |
+
print_code = st.text_area("Try some print statements:",
|
88 |
+
'print("Hello, World!")\nname = "Python"\nprint(f"Hello, {name}!")',
|
89 |
+
height=100)
|
90 |
+
if st.button("Run Print Code"):
|
91 |
+
output = capture_output(print_code)
|
92 |
+
st.code(output, line_numbers=True)
|
93 |
+
|
94 |
+
# Basic Arithmetic Section
|
95 |
+
st.header("3. Basic Arithmetic")
|
96 |
+
st.markdown("""
|
97 |
+
Python can perform basic mathematical operations.
|
98 |
+
""")
|
99 |
+
|
100 |
+
with st.expander("Arithmetic Examples"):
|
101 |
+
st.code("""
|
102 |
+
# Addition
|
103 |
+
result = 5 + 3
|
104 |
+
print(result) # Prints 8
|
105 |
+
|
106 |
+
# Subtraction
|
107 |
+
result = 10 - 4
|
108 |
+
print(result) # Prints 6
|
109 |
+
|
110 |
+
# Multiplication
|
111 |
+
result = 6 * 7
|
112 |
+
print(result) # Prints 42
|
113 |
+
|
114 |
+
# Division
|
115 |
+
result = 15 / 3
|
116 |
+
print(result) # Prints 5.0
|
117 |
+
""", line_numbers=True)
|
118 |
+
|
119 |
+
# Interactive Arithmetic Exercise
|
120 |
+
st.subheader("Try it yourself!")
|
121 |
+
arithmetic_code = st.text_area("Try some arithmetic operations:",
|
122 |
+
'print(5 + 3)\nprint(10 - 4)\nprint(6 * 7)\nprint(15 / 3)',
|
123 |
+
height=100)
|
124 |
+
if st.button("Run Arithmetic Code"):
|
125 |
+
output = capture_output(arithmetic_code)
|
126 |
+
st.code(output, line_numbers=True)
|
127 |
+
|
128 |
+
# Lists Section
|
129 |
+
st.header("4. Lists")
|
130 |
+
st.markdown("""
|
131 |
+
Lists are used to store multiple items in a single variable.
|
132 |
+
""")
|
133 |
+
|
134 |
+
with st.expander("List Examples"):
|
135 |
+
st.code("""
|
136 |
+
# Creating a list
|
137 |
+
fruits = ["apple", "banana", "cherry"]
|
138 |
+
|
139 |
+
# Accessing list items
|
140 |
+
print(fruits[0]) # Prints "apple"
|
141 |
+
|
142 |
+
# Adding to a list
|
143 |
+
fruits.append("orange")
|
144 |
+
print(fruits) # Prints ["apple", "banana", "cherry", "orange"]
|
145 |
+
|
146 |
+
# List length
|
147 |
+
print(len(fruits)) # Prints 4
|
148 |
+
""", line_numbers=True)
|
149 |
+
|
150 |
+
# Interactive List Exercise
|
151 |
+
st.subheader("Try it yourself!")
|
152 |
+
list_code = st.text_area("Try working with lists:",
|
153 |
+
'fruits = ["apple", "banana", "cherry"]\nprint(fruits[0])\nfruits.append("orange")\nprint(fruits)\nprint(len(fruits))',
|
154 |
+
height=100)
|
155 |
+
if st.button("Run List Code"):
|
156 |
+
output = capture_output(list_code)
|
157 |
+
st.code(output, line_numbers=True)
|
158 |
+
|
159 |
+
# Practice Exercise
|
160 |
+
st.header("Practice Exercise")
|
161 |
+
st.markdown("""
|
162 |
+
### Try this exercise:
|
163 |
+
Create a program that:
|
164 |
+
1. Imports the math library
|
165 |
+
2. Creates a list of numbers
|
166 |
+
3. Uses a loop to print each number and its square root
|
167 |
+
""")
|
168 |
+
|
169 |
+
# Interactive Practice Exercise
|
170 |
+
st.subheader("Try your solution!")
|
171 |
+
practice_code = st.text_area("Write your solution here:",
|
172 |
+
'import math\n\nnumbers = [4, 9, 16, 25]\n\nfor num in numbers:\n print(f"Number: {num}, Square root: {math.sqrt(num)}")',
|
173 |
+
height=150)
|
174 |
+
if st.button("Run Practice Code"):
|
175 |
+
output = capture_output(practice_code)
|
176 |
+
st.code(output, line_numbers=True)
|
177 |
+
|
178 |
+
st.markdown("""
|
179 |
+
## Part 2: Data Cleaning Lab
|
180 |
+
|
181 |
+
In this lab, we'll learn how to clean and prepare data using pandas. We'll work with the Advertising dataset and practice common data cleaning techniques.
|
182 |
+
|
183 |
+
This lab is hosted in a Jupyter notebook environment. We will create a new notebook for this lab.
|
184 |
+
""")
|
185 |
+
|
186 |
+
|
187 |
+
st.markdown("""
|
188 |
+
## Week 2: Reference Material
|
189 |
+
|
190 |
+
Please refer to the following links:
|
191 |
+
- [Pandas Documentation](https://pandas.pydata.org/docs/)
|
192 |
+
- [Numpy Documentation](https://numpy.org/doc/)
|
193 |
+
- [Matplotlib Documentation](https://matplotlib.org/stable/users/index.html)
|
194 |
+
- [Seaborn Documentation](https://seaborn.pydata.org/index.html)
|
195 |
+
For learning more about python use the following link:
|
196 |
+
- [Introduction to Statistical Learning](https://www.statlearning.com/resources-python)
|
197 |
+
- [Learning Python notebook](https://github.com/intro-stat-learning/ISLP_labs/blob/stable/Ch02-statlearn-lab.ipynb)
|
198 |
+
For our dataset used today for class:
|
199 |
+
- [Advertising Dataset](https://www.statlearning.com/s/Advertising.csv)
|
200 |
+
""")
|
201 |
+
|
202 |
+
# Weekly Assignment
|
203 |
+
st.header("Weekly Assignment")
|
204 |
+
st.markdown("""
|
205 |
+
### Assignment 2: Python Basics
|
206 |
+
1. Import the dataset that you studied last week: https://github.com/hollandstam1/thesis/blob/main/_book/Quantifying- Art-Historical-Narratives.pdf
|
207 |
+
2. Create a new notebook and load the dataset
|
208 |
+
3. Explore the dataset by answering the following questions:
|
209 |
+
- How many rows and columns are there in the dataset?
|
210 |
+
- What are the variables in the dataset?
|
211 |
+
- What is the data type of each variable?
|
212 |
+
- What is the range of each variable?
|
213 |
+
- What is the mean of each variable?
|
214 |
+
|
215 |
+
**Due Date:** End of Week 2
|
216 |
+
""")
|
217 |
+
'''
|
218 |
+
# Assignment Submission
|
219 |
+
st.subheader("Submit Your Assignment")
|
220 |
+
with st.form("assignment_form"):
|
221 |
+
script_file = st.file_uploader("Upload your Python script (.py)")
|
222 |
+
comments = st.text_area("Additional comments or questions")
|
223 |
+
|
224 |
+
if st.form_submit_button("Submit Assignment"):
|
225 |
+
if script_file is not None:
|
226 |
+
st.success("Assignment submitted successfully!")
|
227 |
+
else:
|
228 |
+
st.error("Please upload your Python script.")'''
|