Spaces:
Running
Running
Commit
·
3aeccd5
1
Parent(s):
25bb492
disable greedy search
Browse files
app.py
CHANGED
@@ -12,7 +12,10 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
12 |
|
13 |
# Load the model and tokenizer
|
14 |
tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
15 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
|
|
|
|
|
16 |
|
17 |
# Function to paraphrase text
|
18 |
def humanize_text(text, temperature=0.7, max_length=512):
|
@@ -24,25 +27,35 @@ def humanize_text(text, temperature=0.7, max_length=512):
|
|
24 |
truncation=True,
|
25 |
).input_ids.to(device)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
outputs = model.generate(
|
28 |
input_ids,
|
29 |
max_length=max_length,
|
30 |
-
|
31 |
-
num_beams=1,
|
32 |
-
num_beam_groups=1,
|
33 |
-
num_return_sequences=1,
|
34 |
repetition_penalty=2.0,
|
35 |
-
diversity_penalty=0.5,
|
36 |
no_repeat_ngram_size=2,
|
37 |
)
|
38 |
|
39 |
paraphrased_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
40 |
return random.choice(paraphrased_texts)
|
41 |
|
|
|
42 |
# Function to split input into sentences
|
43 |
def split_into_sentences(text):
|
44 |
return re.split(r"(?<=[.!?])\s+", text)
|
45 |
|
|
|
46 |
# Function to process multi-line text
|
47 |
def process_text(input_text):
|
48 |
lines = input_text.split("\n")
|
@@ -53,11 +66,15 @@ def process_text(input_text):
|
|
53 |
processed_lines.append(line)
|
54 |
else:
|
55 |
sentences = split_into_sentences(line)
|
56 |
-
processed_sentences = [
|
|
|
|
|
|
|
57 |
processed_lines.append(" ".join(processed_sentences))
|
58 |
|
59 |
return "\n".join(processed_lines)
|
60 |
|
|
|
61 |
# Gradio Interface
|
62 |
iface = gr.Interface(
|
63 |
fn=process_text,
|
|
|
12 |
|
13 |
# Load the model and tokenizer
|
14 |
tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
15 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
16 |
+
"humarin/chatgpt_paraphraser_on_T5_base"
|
17 |
+
).to(device)
|
18 |
+
|
19 |
|
20 |
# Function to paraphrase text
|
21 |
def humanize_text(text, temperature=0.7, max_length=512):
|
|
|
27 |
truncation=True,
|
28 |
).input_ids.to(device)
|
29 |
|
30 |
+
# outputs = model.generate(
|
31 |
+
# input_ids,
|
32 |
+
# max_length=max_length,
|
33 |
+
# temperature=temperature,
|
34 |
+
# num_beams=1,
|
35 |
+
# num_beam_groups=1,
|
36 |
+
# num_return_sequences=1,
|
37 |
+
# repetition_penalty=2.0,
|
38 |
+
# diversity_penalty=0.5,
|
39 |
+
# no_repeat_ngram_size=2,
|
40 |
+
# )
|
41 |
+
|
42 |
outputs = model.generate(
|
43 |
input_ids,
|
44 |
max_length=max_length,
|
45 |
+
do_sample=False,
|
|
|
|
|
|
|
46 |
repetition_penalty=2.0,
|
|
|
47 |
no_repeat_ngram_size=2,
|
48 |
)
|
49 |
|
50 |
paraphrased_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
51 |
return random.choice(paraphrased_texts)
|
52 |
|
53 |
+
|
54 |
# Function to split input into sentences
|
55 |
def split_into_sentences(text):
|
56 |
return re.split(r"(?<=[.!?])\s+", text)
|
57 |
|
58 |
+
|
59 |
# Function to process multi-line text
|
60 |
def process_text(input_text):
|
61 |
lines = input_text.split("\n")
|
|
|
66 |
processed_lines.append(line)
|
67 |
else:
|
68 |
sentences = split_into_sentences(line)
|
69 |
+
processed_sentences = [
|
70 |
+
humanize_text(sentence, max_length=len(sentence))
|
71 |
+
for sentence in sentences
|
72 |
+
]
|
73 |
processed_lines.append(" ".join(processed_sentences))
|
74 |
|
75 |
return "\n".join(processed_lines)
|
76 |
|
77 |
+
|
78 |
# Gradio Interface
|
79 |
iface = gr.Interface(
|
80 |
fn=process_text,
|