rathipriyar commited on
Commit
37a9b5b
·
verified ·
1 Parent(s): 7942cdd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ # Streamlit App Title
5
+ st.title("Tamil Text Generation with LLaMA")
6
+
7
+ # Load the model and tokenizer
8
+ model_name = "abhinand/tamil-llama-7b-base-v0.1"
9
+ st.sidebar.write("Loading the model... This may take some time.")
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ model = AutoModelForCausalLM.from_pretrained(model_name)
12
+
13
+ st.sidebar.write("Model loaded successfully!")
14
+
15
+ # Text input from the user
16
+ input_text = st.text_area("Enter Tamil text:", "வணக்கம், எப்படி இருக்கின்றீர்கள்?")
17
+
18
+ # Generate button
19
+ if st.button("Generate Text"):
20
+ with st.spinner("Generating response..."):
21
+ # Encode the input text
22
+ inputs = tokenizer(input_text, return_tensors="pt")
23
+
24
+ # Generate response
25
+ outputs = model.generate(**inputs, max_length=50)
26
+
27
+ # Decode and display the generated text
28
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
29
+ st.text_area("Generated Response:", generated_text, height=200)