Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Streamlit App Title
|
5 |
+
st.title("Tamil Text Generation with LLaMA")
|
6 |
+
|
7 |
+
# Load the model and tokenizer
|
8 |
+
model_name = "abhinand/tamil-llama-7b-base-v0.1"
|
9 |
+
st.sidebar.write("Loading the model... This may take some time.")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
|
13 |
+
st.sidebar.write("Model loaded successfully!")
|
14 |
+
|
15 |
+
# Text input from the user
|
16 |
+
input_text = st.text_area("Enter Tamil text:", "வணக்கம், எப்படி இருக்கின்றீர்கள்?")
|
17 |
+
|
18 |
+
# Generate button
|
19 |
+
if st.button("Generate Text"):
|
20 |
+
with st.spinner("Generating response..."):
|
21 |
+
# Encode the input text
|
22 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
23 |
+
|
24 |
+
# Generate response
|
25 |
+
outputs = model.generate(**inputs, max_length=50)
|
26 |
+
|
27 |
+
# Decode and display the generated text
|
28 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
+
st.text_area("Generated Response:", generated_text, height=200)
|