Spaces:
Sleeping
Sleeping
changed transformer version
Browse files- main.py +4 -4
- voice/classifier.py +1 -1
main.py
CHANGED
@@ -2,8 +2,8 @@
|
|
2 |
import asyncio
|
3 |
import importlib
|
4 |
from voice.speech_to_text import SpeechToText
|
5 |
-
|
6 |
-
from voice.classifier import TextClassifier
|
7 |
from api.endpoints import FMPEndpoints
|
8 |
from rag.retriever import Retriever
|
9 |
from rag.sql_db import SQL_Key_Pair
|
@@ -12,8 +12,8 @@ from rag.web_search import duckduckgo_web_search
|
|
12 |
async def process_query(vosk_model_path, audio_data=None, query_text=None, use_retriever=False):
|
13 |
# Step 1: Initialize components
|
14 |
stt = SpeechToText(model_path=vosk_model_path)
|
15 |
-
|
16 |
-
classifier = TextClassifier()
|
17 |
endpoints = FMPEndpoints()
|
18 |
# initialize rag tools
|
19 |
retriever = Retriever(file_path="./data/financial_data.csv")
|
|
|
2 |
import asyncio
|
3 |
import importlib
|
4 |
from voice.speech_to_text import SpeechToText
|
5 |
+
from voice.intent_classifier import IntentClassifier
|
6 |
+
# from voice.classifier import TextClassifier
|
7 |
from api.endpoints import FMPEndpoints
|
8 |
from rag.retriever import Retriever
|
9 |
from rag.sql_db import SQL_Key_Pair
|
|
|
12 |
async def process_query(vosk_model_path, audio_data=None, query_text=None, use_retriever=False):
|
13 |
# Step 1: Initialize components
|
14 |
stt = SpeechToText(model_path=vosk_model_path)
|
15 |
+
classifier = IntentClassifier()
|
16 |
+
# classifier = TextClassifier()
|
17 |
endpoints = FMPEndpoints()
|
18 |
# initialize rag tools
|
19 |
retriever = Retriever(file_path="./data/financial_data.csv")
|
voice/classifier.py
CHANGED
@@ -8,7 +8,7 @@ from difflib import SequenceMatcher
|
|
8 |
class TextClassifier:
|
9 |
def __init__(self):
|
10 |
# Use a larger model for better NER (optional)
|
11 |
-
self.nlp = spacy.load("
|
12 |
try:
|
13 |
# Use a smaller, PyTorch-compatible model for zero-shot classification
|
14 |
self.classifier = pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli")
|
|
|
8 |
class TextClassifier:
|
9 |
def __init__(self):
|
10 |
# Use a larger model for better NER (optional)
|
11 |
+
self.nlp = spacy.load("en_core_web_lg") # "en_core_web_lg"
|
12 |
try:
|
13 |
# Use a smaller, PyTorch-compatible model for zero-shot classification
|
14 |
self.classifier = pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli")
|