Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces | |
import os | |
import gc | |
import random | |
import warnings | |
warnings.filterwarnings("ignore") | |
import numpy as np | |
import pandas as pd | |
pd.set_option("display.max_rows", 500) | |
pd.set_option("display.max_columns", 500) | |
pd.set_option("display.width", 1000) | |
from tqdm.auto import tqdm | |
import torch | |
import torch.nn as nn | |
import tokenizers | |
import transformers | |
print(f"tokenizers.__version__: {tokenizers.__version__}") | |
print(f"transformers.__version__: {transformers.__version__}") | |
print(f"torch.__version__: {torch.__version__}") | |
print(f"torch cuda version: {torch.version.cuda}") | |
from transformers import AutoTokenizer, AutoConfig | |
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, MistralForCausalLM | |
from peft import LoraConfig, get_peft_model | |
title = "H2O AI Predict the LLM" | |
#Theme from - https://huggingface.co/spaces/trl-lib/stack-llama/blob/main/app.py | |
theme = gr.themes.Monochrome( | |
primary_hue="indigo", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
radius_size=gr.themes.sizes.radius_sm, | |
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], | |
) | |
def do_submit(question, response): | |
full_text = question + " " + response | |
# result = do_inference(full_text) | |
return "result" | |
with gr.Blocks(title=title) as demo: # theme=theme | |
sample_examples = pd.read_csv('sample_examples.csv') | |
example_list = sample_examples[['Question','Response','target']].sample(2).values.tolist() | |
gr.Markdown(f"## {title}") | |
with gr.Row(): | |
# with gr.Column(scale=1): | |
# gr.Markdown("### Question and LLM Response") | |
question_text = gr.Textbox(lines=2, placeholder="Question:", label="") | |
response_text = gr.Textbox(lines=2, placeholder="Response:", label="") | |
target_text = gr.Textbox(lines=1, placeholder="Target:", label="", interactive=False , visible=False) | |
llm_num = gr.Textbox(value="", label="LLM #") | |
with gr.Row(): | |
sub_btn = gr.Button("Submit") | |
sub_btn.click(fn=do_submit, inputs=[question_text, response_text], outputs=[llm_num]) | |
gr.Markdown("## Sample Inputs:") | |
gr.Examples( | |
example_list, | |
[question_text,response_text,target_text], | |
# cache_examples=True, | |
) | |
demo.launch(debug=True) |