Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,117 +0,0 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
import os
|
5 |
-
import pdfminer.high_level
|
6 |
-
import docx
|
7 |
-
from sentence_transformers import SentenceTransformer
|
8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
-
import torch
|
10 |
-
import faiss
|
11 |
-
import tempfile
|
12 |
-
|
13 |
-
# ====== Settings ======
|
14 |
-
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
15 |
-
GENERATION_MODEL_NAME = "aubmindlab/aragpt2-small"
|
16 |
-
CHUNK_SIZE = 500
|
17 |
-
CHUNK_OVERLAP = 50
|
18 |
-
TOP_K = 5
|
19 |
-
|
20 |
-
# ====== Load Models ======
|
21 |
-
embedder = SentenceTransformer(EMBEDDING_MODEL_NAME)
|
22 |
-
gen_tokenizer = AutoTokenizer.from_pretrained(GENERATION_MODEL_NAME)
|
23 |
-
gen_model = AutoModelForCausalLM.from_pretrained(GENERATION_MODEL_NAME)
|
24 |
-
|
25 |
-
# ====== Globals ======
|
26 |
-
index = None
|
27 |
-
chunks = []
|
28 |
-
|
29 |
-
# ====== Helpers ======
|
30 |
-
def extract_text_from_pdf(file_path):
|
31 |
-
with open(file_path, 'rb') as f:
|
32 |
-
return pdfminer.high_level.extract_text(f)
|
33 |
-
|
34 |
-
def extract_text_from_docx(file_path):
|
35 |
-
doc = docx.Document(file_path)
|
36 |
-
return "\n".join([para.text for para in doc.paragraphs])
|
37 |
-
|
38 |
-
def chunk_text(text):
|
39 |
-
words = text.split()
|
40 |
-
chunks = []
|
41 |
-
for i in range(0, len(words), CHUNK_SIZE - CHUNK_OVERLAP):
|
42 |
-
chunk = " ".join(words[i:i+CHUNK_SIZE])
|
43 |
-
chunks.append(chunk)
|
44 |
-
return chunks
|
45 |
-
|
46 |
-
def build_vector_store(chunks):
|
47 |
-
vectors = embedder.encode(chunks)
|
48 |
-
dim = vectors.shape[1]
|
49 |
-
idx = faiss.IndexFlatL2(dim)
|
50 |
-
idx.add(vectors)
|
51 |
-
return idx, vectors
|
52 |
-
|
53 |
-
def retrieve_relevant_chunks(question, idx, chunks, vectors):
|
54 |
-
q_vec = embedder.encode([question])
|
55 |
-
D, I = idx.search(q_vec, TOP_K)
|
56 |
-
return [chunks[i] for i in I[0] if i < len(chunks)]
|
57 |
-
|
58 |
-
def generate_answer(context_chunks, question):
|
59 |
-
context = " \n".join(context_chunks)
|
60 |
-
prompt = f"سؤال: {question}\nمحتوى ذو صلة: {context}\nجواب:"
|
61 |
-
inputs = gen_tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
|
62 |
-
outputs = gen_model.generate(**inputs, max_new_tokens=100)
|
63 |
-
answer = gen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
64 |
-
answer = answer.split("جواب:")[-1].strip()
|
65 |
-
return answer
|
66 |
-
|
67 |
-
# ====== Gradio Functions ======
|
68 |
-
def upload_and_train(files):
|
69 |
-
global index, chunks
|
70 |
-
|
71 |
-
all_text = ""
|
72 |
-
for file in files:
|
73 |
-
suffix = os.path.splitext(file.name)[-1].lower()
|
74 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
|
75 |
-
tmp.write(file.read())
|
76 |
-
tmp_path = tmp.name
|
77 |
-
if suffix == ".pdf":
|
78 |
-
all_text += extract_text_from_pdf(tmp_path) + "\n"
|
79 |
-
elif suffix in [".docx", ".doc"]:
|
80 |
-
all_text += extract_text_from_docx(tmp_path) + "\n"
|
81 |
-
os.unlink(tmp_path)
|
82 |
-
|
83 |
-
chunks = chunk_text(all_text)
|
84 |
-
index, vectors = build_vector_store(chunks)
|
85 |
-
|
86 |
-
return "✅ النظام جاهز للإجابة على أسئلتك"
|
87 |
-
|
88 |
-
def ask_question(user_question):
|
89 |
-
if index is None:
|
90 |
-
return "الرجاء رفع الكتب أولاً وتدريب النظام."
|
91 |
-
rel_chunks = retrieve_relevant_chunks(user_question, index, chunks, None)
|
92 |
-
answer = generate_answer(rel_chunks, user_question)
|
93 |
-
return answer
|
94 |
-
|
95 |
-
# ====== Gradio Interface ======
|
96 |
-
upload = gr.File(file_types=[".pdf", ".doc", ".docx"], file_count="multiple")
|
97 |
-
train_btn = gr.Button("ابدأ التدريب")
|
98 |
-
train_output = gr.Textbox()
|
99 |
-
question_input = gr.Textbox(placeholder="اكتب سؤالك هنا باللغة العربية")
|
100 |
-
answer_output = gr.Textbox()
|
101 |
-
ask_btn = gr.Button("أرسل السؤال")
|
102 |
-
|
103 |
-
with gr.Blocks() as demo:
|
104 |
-
gr.Markdown("# 🧠 محاكاة دماغ المؤلف - نظام ذكي للإجابة على الأسئلة من كتبك بالعربية")
|
105 |
-
upload.render()
|
106 |
-
train_btn.render()
|
107 |
-
train_output.render()
|
108 |
-
question_input.render()
|
109 |
-
ask_btn.render()
|
110 |
-
answer_output.render()
|
111 |
-
|
112 |
-
train_btn.click(upload_and_train, inputs=[upload], outputs=[train_output])
|
113 |
-
ask_btn.click(ask_question, inputs=[question_input], outputs=[answer_output])
|
114 |
-
|
115 |
-
# Launch
|
116 |
-
if __name__ == "__main__":
|
117 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|