ramwar commited on
Commit
e4f3226
·
1 Parent(s): 1b41f61

test without llm

Browse files
Files changed (1) hide show
  1. app.py +13 -12
app.py CHANGED
@@ -32,10 +32,10 @@ REPO_ID = "declare-lab/flan-alpaca-large"
32
 
33
  transformers.utils.move_cache()
34
 
35
- llm = HuggingFaceHub(
36
- repo_id=REPO_ID,
37
- model_kwargs={"temperature":0, "max_length":512}
38
- )
39
 
40
  embeddings = HuggingFaceEmbeddings()
41
  callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
@@ -45,19 +45,20 @@ def read_textfile(File):
45
  documents = loader.load()
46
  text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
47
  docs = text_splitter.split_documents(documents)
48
- db = FAISS.from_documents(docs, embeddings)
49
- db.save_local(folder_path=".", index_name="faiss_index")
50
 
51
  def ask_question(question, chat_history):
52
- chain = load_qa_chain(llm, chain_type="stuff", verbose=False)
53
  db = FAISS.load_local(folder_path=".", embeddings=embeddings, index_name="faiss_index")
54
  relevant_docs = db.similarity_search(question)
55
 
56
- answer = chain.run(
57
- input_documents=relevant_docs,
58
- question=question,
59
- callbacks=callback_manager
60
- )
 
61
 
62
  chat_history.append((question, answer))
63
  time.sleep(1)
 
32
 
33
  transformers.utils.move_cache()
34
 
35
+ #llm = HuggingFaceHub(
36
+ # repo_id=REPO_ID,
37
+ # model_kwargs={"temperature":0, "max_length":512}
38
+ #)
39
 
40
  embeddings = HuggingFaceEmbeddings()
41
  callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
 
45
  documents = loader.load()
46
  text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
47
  docs = text_splitter.split_documents(documents)
48
+ #db = FAISS.from_documents(docs, embeddings)
49
+ #db.save_local(folder_path=".", index_name="faiss_index")
50
 
51
  def ask_question(question, chat_history):
52
+ #chain = load_qa_chain(llm, chain_type="stuff", verbose=False)
53
  db = FAISS.load_local(folder_path=".", embeddings=embeddings, index_name="faiss_index")
54
  relevant_docs = db.similarity_search(question)
55
 
56
+ answer = ""
57
+ #answer = chain.run(
58
+ # input_documents=relevant_docs,
59
+ # question=question,
60
+ # callbacks=callback_manager
61
+ #)
62
 
63
  chat_history.append((question, answer))
64
  time.sleep(1)