Spaces:
Paused
Paused
Update train.py
Browse files
train.py
CHANGED
@@ -1,68 +1,73 @@
|
|
1 |
-
# train.py
|
2 |
-
|
3 |
import os
|
4 |
import torch
|
5 |
from huggingface_hub import snapshot_download
|
6 |
-
from peft import LoraConfig, get_peft_model
|
7 |
-
|
8 |
-
# 1οΈβ£ Pick your scheduler class
|
9 |
from diffusers import (
|
10 |
StableDiffusionPipeline,
|
11 |
DPMSolverMultistepScheduler,
|
12 |
-
UNet2DConditionModel,
|
13 |
AutoencoderKL,
|
|
|
14 |
)
|
15 |
from transformers import CLIPTextModel, CLIPTokenizer
|
|
|
16 |
|
17 |
-
# βββ
|
18 |
|
19 |
-
DATA_DIR
|
20 |
-
|
21 |
-
OUTPUT_DIR
|
|
|
22 |
|
23 |
-
# βββ
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
-
# βββ
|
32 |
|
33 |
-
|
34 |
scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
35 |
-
|
36 |
-
subfolder="scheduler"
|
37 |
)
|
38 |
|
39 |
-
#
|
|
|
|
|
40 |
vae = AutoencoderKL.from_pretrained(
|
41 |
-
|
42 |
subfolder="vae",
|
43 |
-
torch_dtype=torch.float16
|
44 |
).to("cuda")
|
45 |
|
46 |
-
#
|
|
|
|
|
47 |
text_encoder = CLIPTextModel.from_pretrained(
|
48 |
-
|
49 |
subfolder="text_encoder",
|
50 |
-
torch_dtype=torch.float16
|
51 |
).to("cuda")
|
52 |
-
tokenizer
|
53 |
-
|
54 |
-
subfolder="tokenizer"
|
55 |
)
|
56 |
|
57 |
-
#
|
|
|
|
|
58 |
unet = UNet2DConditionModel.from_pretrained(
|
59 |
-
|
60 |
subfolder="unet",
|
61 |
-
torch_dtype=torch.float16
|
62 |
).to("cuda")
|
63 |
|
64 |
-
# βββ
|
65 |
|
|
|
66 |
pipe = StableDiffusionPipeline(
|
67 |
vae=vae,
|
68 |
text_encoder=text_encoder,
|
@@ -71,8 +76,9 @@ pipe = StableDiffusionPipeline(
|
|
71 |
scheduler=scheduler,
|
72 |
).to("cuda")
|
73 |
|
74 |
-
# βββ
|
75 |
|
|
|
76 |
lora_config = LoraConfig(
|
77 |
r=16,
|
78 |
lora_alpha=16,
|
@@ -81,15 +87,15 @@ lora_config = LoraConfig(
|
|
81 |
)
|
82 |
pipe.unet = get_peft_model(pipe.unet, lora_config)
|
83 |
|
84 |
-
# βββ
|
85 |
|
86 |
-
print(f"π
|
87 |
for step in range(100):
|
88 |
-
#
|
89 |
print(f"Training step {step+1}/100")
|
90 |
|
91 |
-
# βββ
|
92 |
|
93 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
94 |
pipe.save_pretrained(OUTPUT_DIR)
|
95 |
-
print("β
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
4 |
from diffusers import (
|
5 |
StableDiffusionPipeline,
|
6 |
DPMSolverMultistepScheduler,
|
|
|
7 |
AutoencoderKL,
|
8 |
+
UNet2DConditionModel,
|
9 |
)
|
10 |
from transformers import CLIPTextModel, CLIPTokenizer
|
11 |
+
from peft import LoraConfig, get_peft_model
|
12 |
|
13 |
+
# βββ CONFIG βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
14 |
|
15 |
+
DATA_DIR = os.getenv("DATA_DIR", "./data")
|
16 |
+
MODEL_CACHE = os.getenv("MODEL_DIR", "./hidream-model")
|
17 |
+
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./lora-trained")
|
18 |
+
REPO_ID = "HiDream-ai/HiDream-I1-Dev"
|
19 |
|
20 |
+
# βββ STEP 1: ENSURE YOU HAVE A COMPLETE SNAPSHOT WITH CONFIGS βββββββββββββββββ
|
21 |
|
22 |
+
print(f"π₯ Downloading full model snapshot to {MODEL_CACHE}")
|
23 |
+
MODEL_ROOT = snapshot_download(
|
24 |
+
repo_id=REPO_ID,
|
25 |
+
local_dir=MODEL_CACHE,
|
26 |
+
local_dir_use_symlinks=False, # force a copy so config.json ends up there
|
27 |
+
)
|
28 |
|
29 |
+
# βββ STEP 2: LOAD SCHEDULER ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
30 |
|
31 |
+
print("π Loading scheduler")
|
32 |
scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
33 |
+
MODEL_ROOT,
|
34 |
+
subfolder="scheduler",
|
35 |
)
|
36 |
|
37 |
+
# βββ STEP 3: LOAD VAE ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
38 |
+
|
39 |
+
print("π Loading VAE")
|
40 |
vae = AutoencoderKL.from_pretrained(
|
41 |
+
MODEL_ROOT,
|
42 |
subfolder="vae",
|
43 |
+
torch_dtype=torch.float16,
|
44 |
).to("cuda")
|
45 |
|
46 |
+
# βββ STEP 4: LOAD TEXT ENCODER + TOKENIZER βββββββββββββββββββββββββββββββββββββ
|
47 |
+
|
48 |
+
print("π Loading text encoder + tokenizer")
|
49 |
text_encoder = CLIPTextModel.from_pretrained(
|
50 |
+
MODEL_ROOT,
|
51 |
subfolder="text_encoder",
|
52 |
+
torch_dtype=torch.float16,
|
53 |
).to("cuda")
|
54 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
55 |
+
MODEL_ROOT,
|
56 |
+
subfolder="tokenizer",
|
57 |
)
|
58 |
|
59 |
+
# βββ STEP 5: LOAD UβNET βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
60 |
+
|
61 |
+
print("π Loading UβNet")
|
62 |
unet = UNet2DConditionModel.from_pretrained(
|
63 |
+
MODEL_ROOT,
|
64 |
subfolder="unet",
|
65 |
+
torch_dtype=torch.float16,
|
66 |
).to("cuda")
|
67 |
|
68 |
+
# βββ STEP 6: BUILD THE PIPELINE βββββββββββββββββββββββββββββββββββββββββββββββ
|
69 |
|
70 |
+
print("π Building StableDiffusionPipeline")
|
71 |
pipe = StableDiffusionPipeline(
|
72 |
vae=vae,
|
73 |
text_encoder=text_encoder,
|
|
|
76 |
scheduler=scheduler,
|
77 |
).to("cuda")
|
78 |
|
79 |
+
# βββ STEP 7: APPLY LORA ADAPTER βββββββββββββββββββββββββββββββββββββββββββββββ
|
80 |
|
81 |
+
print("π§ Applying LoRA adapter")
|
82 |
lora_config = LoraConfig(
|
83 |
r=16,
|
84 |
lora_alpha=16,
|
|
|
87 |
)
|
88 |
pipe.unet = get_peft_model(pipe.unet, lora_config)
|
89 |
|
90 |
+
# βββ STEP 8: YOUR TRAINING LOOP (SIMULATED) ββββββββββββββββββββββββββββββββββββ
|
91 |
|
92 |
+
print(f"π Loading dataset from: {DATA_DIR}")
|
93 |
for step in range(100):
|
94 |
+
# ββ hereβs where youβd load your images, run forward/backward, optimizer, etc.
|
95 |
print(f"Training step {step+1}/100")
|
96 |
|
97 |
+
# βββ STEP 9: SAVE THE FINEβTUNED LOβRA WEIGHTS βββββββββββββββββββββββββββββββ
|
98 |
|
99 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
100 |
pipe.save_pretrained(OUTPUT_DIR)
|
101 |
+
print("β
Training complete. Saved to", OUTPUT_DIR)
|