Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import subprocess
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
# βββ 1. Mode detection & data directory βββββββββββββββββββββββββββββββββββββββ
|
7 |
+
# LOCAL_TRAIN=1 β use "./data"; otherwise Spaces uses "/tmp/data"
|
8 |
+
LOCAL = os.environ.get("LOCAL_TRAIN", "").lower() in ("1", "true")
|
9 |
+
DATA_DIR = os.path.join(os.getcwd(), "data") if LOCAL else "/tmp/data"
|
10 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
11 |
+
|
12 |
+
# βββ 2. Page layout βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
13 |
+
st.set_page_config(page_title="HiDream LoRA Trainer", layout="wide")
|
14 |
+
st.title("π¨ HiDream LoRA Trainer (Streamlit)")
|
15 |
+
|
16 |
+
# Sidebar for configuration
|
17 |
+
with st.sidebar:
|
18 |
+
st.header("π Configuration")
|
19 |
+
base_model = st.selectbox(
|
20 |
+
"Base Model",
|
21 |
+
["HiDream-ai/HiDream-I1-Dev",
|
22 |
+
"runwayml/stable-diffusion-v1-5",
|
23 |
+
"stabilityai/stable-diffusion-2-1"]
|
24 |
+
)
|
25 |
+
trigger_word = st.text_input("Trigger Word", value="default-style")
|
26 |
+
num_steps = st.slider("Training Steps", min_value=10, max_value=500, value=100, step=10)
|
27 |
+
lora_r = st.slider("LoRA Rank (r)", min_value=4, max_value=128, value=16, step=4)
|
28 |
+
lora_alpha = st.slider("LoRA Alpha", min_value=4, max_value=128, value=16, step=4)
|
29 |
+
|
30 |
+
st.markdown("---")
|
31 |
+
st.header("π Upload Dataset")
|
32 |
+
uploaded_files = st.file_uploader(
|
33 |
+
"Select your images & text files",
|
34 |
+
type=["jpg","jpeg","png","txt"],
|
35 |
+
accept_multiple_files=True
|
36 |
+
)
|
37 |
+
if st.button("Upload Dataset"):
|
38 |
+
# Clear old files
|
39 |
+
for f in os.listdir(DATA_DIR):
|
40 |
+
os.remove(os.path.join(DATA_DIR, f))
|
41 |
+
# Write new files
|
42 |
+
for up in uploaded_files:
|
43 |
+
dest = os.path.join(DATA_DIR, up.name)
|
44 |
+
with open(dest, "wb") as f:
|
45 |
+
f.write(up.getbuffer())
|
46 |
+
st.success(f"β
Uploaded {len(uploaded_files)} files to `{DATA_DIR}`")
|
47 |
+
|
48 |
+
st.markdown("---")
|
49 |
+
# Trigger training
|
50 |
+
if st.button("π Start Training"):
|
51 |
+
st.session_state.training = True
|
52 |
+
|
53 |
+
# βββ 3. Training log area βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
54 |
+
log_area = st.empty()
|
55 |
+
|
56 |
+
# βββ 4. Invoke training when triggered ββββββββββββββββββββββββββββββββββββββββ
|
57 |
+
if st.session_state.get("training", False):
|
58 |
+
st.info("Training started⦠Logs below:")
|
59 |
+
log_lines = []
|
60 |
+
# Prepare environment for train.py
|
61 |
+
env = os.environ.copy()
|
62 |
+
env.update({
|
63 |
+
"BASE_MODEL": base_model,
|
64 |
+
"TRIGGER_WORD": trigger_word,
|
65 |
+
"NUM_STEPS": str(num_steps),
|
66 |
+
"LORA_R": str(lora_r),
|
67 |
+
"LORA_ALPHA": str(lora_alpha),
|
68 |
+
"LOCAL_TRAIN": os.environ.get("LOCAL_TRAIN","")
|
69 |
+
})
|
70 |
+
|
71 |
+
# Launch train.py as subprocess and stream logs
|
72 |
+
proc = subprocess.Popen(
|
73 |
+
["python3", "train.py"],
|
74 |
+
stdout=subprocess.PIPE,
|
75 |
+
stderr=subprocess.STDOUT,
|
76 |
+
text=True,
|
77 |
+
env=env
|
78 |
+
)
|
79 |
+
|
80 |
+
for line in proc.stdout:
|
81 |
+
log_lines.append(line)
|
82 |
+
# Update the text area with all lines so far
|
83 |
+
log_area.text_area("Training Log", value="".join(log_lines), height=400)
|
84 |
+
proc.wait()
|
85 |
+
|
86 |
+
if proc.returncode == 0:
|
87 |
+
st.success("β
Training complete!")
|
88 |
+
else:
|
89 |
+
st.error(f"β Training failed (exit code {proc.returncode})")
|
90 |
+
# Reset trigger
|
91 |
+
st.session_state.training = False
|