Spaces:
Paused
Paused
import os | |
import torch | |
from aitoolkit import ( | |
LoRATrainer, | |
StableDiffusionModel, | |
LoRAConfig, | |
ImageTextDataset, | |
) | |
# 1. Configuration | |
MODEL_ID = "HiDream-ai/HiDream-I1-Dev" # or your gated FLUX model if you have access | |
DATA_DIR = "/workspace/data" | |
OUTPUT_DIR = "/workspace/lora-trained" | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
lora_cfg = LoRAConfig( | |
rank=16, | |
alpha=16, | |
bias="none", | |
) | |
training_args = { | |
"num_train_steps": 100, | |
"batch_size": 4, | |
"learning_rate": 1e-4, | |
"save_every_n_steps": 50, | |
"output_dir": OUTPUT_DIR, | |
} | |
# 2. Load base diffusion model | |
model = StableDiffusionModel.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.float16, | |
device=DEVICE, | |
use_auth_token=True, # if it’s a gated repo | |
) | |
# 3. Prepare your dataset | |
# Expects pairs of image files + .txt captions in DATA_DIR | |
dataset = ImageTextDataset(data_root=DATA_DIR, image_size=512) | |
# 4. Hook up the LoRA adapter | |
model.apply_lora(lora_cfg) | |
# 5. Create the trainer and kickoff | |
trainer = LoRATrainer( | |
model=model, | |
dataset=dataset, | |
args=training_args, | |
) | |
print("🚀 Starting training with AI‑Toolkit…") | |
trainer.train() | |
print(f"✅ Done! Fine-tuned weights saved to {OUTPUT_DIR}") | |