ramimu's picture
Upload 586 files
1c72248 verified
from fnmatch import fnmatch
from typing import Any, Dict, List, Optional, Union
import torch
from dataclasses import dataclass
from optimum.quanto.quantize import _quantize_submodule
from optimum.quanto.tensor import Optimizer, qtype, qtypes
from torchao.quantization.quant_api import (
quantize_ as torchao_quantize_,
Float8WeightOnlyConfig,
UIntXWeightOnlyConfig
)
# the quantize function in quanto had a bug where it was using exclude instead of include
Q_MODULES = ['QLinear', 'QConv2d', 'QEmbedding', 'QBatchNorm2d', 'QLayerNorm', 'QConvTranspose2d', 'QEmbeddingBag']
torchao_qtypes = {
# "int4": Int4WeightOnlyConfig(),
"uint2": UIntXWeightOnlyConfig(torch.uint2),
"uint3": UIntXWeightOnlyConfig(torch.uint3),
"uint4": UIntXWeightOnlyConfig(torch.uint4),
"uint5": UIntXWeightOnlyConfig(torch.uint5),
"uint6": UIntXWeightOnlyConfig(torch.uint6),
"uint7": UIntXWeightOnlyConfig(torch.uint7),
"uint8": UIntXWeightOnlyConfig(torch.uint8),
"float8": Float8WeightOnlyConfig(),
}
class aotype:
def __init__(self, name: str):
self.name = name
self.config = torchao_qtypes[name]
def get_qtype(qtype: Union[str, qtype]) -> qtype:
if qtype in torchao_qtypes:
return aotype(qtype)
if isinstance(qtype, str):
return qtypes[qtype]
else:
return qtype
def quantize(
model: torch.nn.Module,
weights: Optional[Union[str, qtype, aotype]] = None,
activations: Optional[Union[str, qtype]] = None,
optimizer: Optional[Optimizer] = None,
include: Optional[Union[str, List[str]]] = None,
exclude: Optional[Union[str, List[str]]] = None,
):
"""Quantize the specified model submodules
Recursively quantize the submodules of the specified parent model.
Only modules that have quantized counterparts will be quantized.
If include patterns are specified, the submodule name must match one of them.
If exclude patterns are specified, the submodule must not match one of them.
Include or exclude patterns are Unix shell-style wildcards which are NOT regular expressions. See
https://docs.python.org/3/library/fnmatch.html for more details.
Note: quantization happens in-place and modifies the original model and its descendants.
Args:
model (`torch.nn.Module`): the model whose submodules will be quantized.
weights (`Optional[Union[str, qtype]]`): the qtype for weights quantization.
activations (`Optional[Union[str, qtype]]`): the qtype for activations quantization.
include (`Optional[Union[str, List[str]]]`):
Patterns constituting the allowlist. If provided, module names must match at
least one pattern from the allowlist.
exclude (`Optional[Union[str, List[str]]]`):
Patterns constituting the denylist. If provided, module names must not match
any patterns from the denylist.
"""
if include is not None:
include = [include] if isinstance(include, str) else include
if exclude is not None:
exclude = [exclude] if isinstance(exclude, str) else exclude
for name, m in model.named_modules():
if include is not None and not any(fnmatch(name, pattern) for pattern in include):
continue
if exclude is not None and any(fnmatch(name, pattern) for pattern in exclude):
continue
try:
# check if m is QLinear or QConv2d
if m.__class__.__name__ in Q_MODULES:
continue
else:
if isinstance(weights, aotype):
torchao_quantize_(m, weights.config)
else:
_quantize_submodule(model, name, m, weights=weights,
activations=activations, optimizer=optimizer)
except Exception as e:
print(f"Failed to quantize {name}: {e}")
raise e