Spaces:
Paused
Paused
import math | |
from typing import Union | |
from torch.distributions import LogNormal | |
from diffusers import FlowMatchEulerDiscreteScheduler | |
import torch | |
import numpy as np | |
def calculate_shift( | |
image_seq_len, | |
base_seq_len: int = 256, | |
max_seq_len: int = 4096, | |
base_shift: float = 0.5, | |
max_shift: float = 1.16, | |
): | |
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
b = base_shift - m * base_seq_len | |
mu = image_seq_len * m + b | |
return mu | |
class CustomFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.init_noise_sigma = 1.0 | |
self.timestep_type = "linear" | |
with torch.no_grad(): | |
# create weights for timesteps | |
num_timesteps = 1000 | |
# Bell-Shaped Mean-Normalized Timestep Weighting | |
# bsmntw? need a better name | |
x = torch.arange(num_timesteps, dtype=torch.float32) | |
y = torch.exp(-2 * ((x - num_timesteps / 2) / num_timesteps) ** 2) | |
# Shift minimum to 0 | |
y_shifted = y - y.min() | |
# Scale to make mean 1 | |
bsmntw_weighing = y_shifted * (num_timesteps / y_shifted.sum()) | |
# only do half bell | |
hbsmntw_weighing = y_shifted * (num_timesteps / y_shifted.sum()) | |
# flatten second half to max | |
hbsmntw_weighing[num_timesteps // | |
2:] = hbsmntw_weighing[num_timesteps // 2:].max() | |
# Create linear timesteps from 1000 to 0 | |
timesteps = torch.linspace(1000, 0, num_timesteps, device='cpu') | |
self.linear_timesteps = timesteps | |
self.linear_timesteps_weights = bsmntw_weighing | |
self.linear_timesteps_weights2 = hbsmntw_weighing | |
pass | |
def get_weights_for_timesteps(self, timesteps: torch.Tensor, v2=False) -> torch.Tensor: | |
# Get the indices of the timesteps | |
step_indices = [(self.timesteps == t).nonzero().item() | |
for t in timesteps] | |
# Get the weights for the timesteps | |
if v2: | |
weights = self.linear_timesteps_weights2[step_indices].flatten() | |
else: | |
weights = self.linear_timesteps_weights[step_indices].flatten() | |
return weights | |
def get_sigmas(self, timesteps: torch.Tensor, n_dim, dtype, device) -> torch.Tensor: | |
sigmas = self.sigmas.to(device=device, dtype=dtype) | |
schedule_timesteps = self.timesteps.to(device) | |
timesteps = timesteps.to(device) | |
step_indices = [(schedule_timesteps == t).nonzero().item() | |
for t in timesteps] | |
sigma = sigmas[step_indices].flatten() | |
while len(sigma.shape) < n_dim: | |
sigma = sigma.unsqueeze(-1) | |
return sigma | |
def add_noise( | |
self, | |
original_samples: torch.Tensor, | |
noise: torch.Tensor, | |
timesteps: torch.Tensor, | |
) -> torch.Tensor: | |
t_01 = (timesteps / 1000).to(original_samples.device) | |
# forward ODE | |
noisy_model_input = (1.0 - t_01) * original_samples + t_01 * noise | |
# reverse ODE | |
# noisy_model_input = (1 - t_01) * noise + t_01 * original_samples | |
return noisy_model_input | |
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: | |
return sample | |
def set_train_timesteps( | |
self, | |
num_timesteps, | |
device, | |
timestep_type='linear', | |
latents=None, | |
patch_size=1 | |
): | |
self.timestep_type = timestep_type | |
if timestep_type == 'linear': | |
timesteps = torch.linspace(1000, 0, num_timesteps, device=device) | |
self.timesteps = timesteps | |
return timesteps | |
elif timestep_type == 'sigmoid': | |
# distribute them closer to center. Inference distributes them as a bias toward first | |
# Generate values from 0 to 1 | |
t = torch.sigmoid(torch.randn((num_timesteps,), device=device)) | |
# Scale and reverse the values to go from 1000 to 0 | |
timesteps = ((1 - t) * 1000) | |
# Sort the timesteps in descending order | |
timesteps, _ = torch.sort(timesteps, descending=True) | |
self.timesteps = timesteps.to(device=device) | |
return timesteps | |
elif timestep_type in ['flux_shift', 'lumina2_shift', 'shift']: | |
# matches inference dynamic shifting | |
timesteps = np.linspace( | |
self._sigma_to_t(self.sigma_max), self._sigma_to_t( | |
self.sigma_min), num_timesteps | |
) | |
sigmas = timesteps / self.config.num_train_timesteps | |
if self.config.use_dynamic_shifting: | |
if latents is None: | |
raise ValueError('latents is None') | |
# for flux we double up the patch size before sending her to simulate the latent reduction | |
h = latents.shape[2] | |
w = latents.shape[3] | |
image_seq_len = h * w // (patch_size**2) | |
mu = calculate_shift( | |
image_seq_len, | |
self.config.get("base_image_seq_len", 256), | |
self.config.get("max_image_seq_len", 4096), | |
self.config.get("base_shift", 0.5), | |
self.config.get("max_shift", 1.16), | |
) | |
sigmas = self.time_shift(mu, 1.0, sigmas) | |
else: | |
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas) | |
if self.config.shift_terminal: | |
sigmas = self.stretch_shift_to_terminal(sigmas) | |
if self.config.use_karras_sigmas: | |
sigmas = self._convert_to_karras( | |
in_sigmas=sigmas, num_inference_steps=self.config.num_train_timesteps) | |
elif self.config.use_exponential_sigmas: | |
sigmas = self._convert_to_exponential( | |
in_sigmas=sigmas, num_inference_steps=self.config.num_train_timesteps) | |
elif self.config.use_beta_sigmas: | |
sigmas = self._convert_to_beta( | |
in_sigmas=sigmas, num_inference_steps=self.config.num_train_timesteps) | |
sigmas = torch.from_numpy(sigmas).to( | |
dtype=torch.float32, device=device) | |
timesteps = sigmas * self.config.num_train_timesteps | |
if self.config.invert_sigmas: | |
sigmas = 1.0 - sigmas | |
timesteps = sigmas * self.config.num_train_timesteps | |
sigmas = torch.cat( | |
[sigmas, torch.ones(1, device=sigmas.device)]) | |
else: | |
sigmas = torch.cat( | |
[sigmas, torch.zeros(1, device=sigmas.device)]) | |
self.timesteps = timesteps.to(device=device) | |
self.sigmas = sigmas | |
self.timesteps = timesteps.to(device=device) | |
return timesteps | |
elif timestep_type == 'lognorm_blend': | |
# disgtribute timestepd to the center/early and blend in linear | |
alpha = 0.75 | |
lognormal = LogNormal(loc=0, scale=0.333) | |
# Sample from the distribution | |
t1 = lognormal.sample((int(num_timesteps * alpha),)).to(device) | |
# Scale and reverse the values to go from 1000 to 0 | |
t1 = ((1 - t1/t1.max()) * 1000) | |
# add half of linear | |
t2 = torch.linspace(1000, 0, int( | |
num_timesteps * (1 - alpha)), device=device) | |
timesteps = torch.cat((t1, t2)) | |
# Sort the timesteps in descending order | |
timesteps, _ = torch.sort(timesteps, descending=True) | |
timesteps = timesteps.to(torch.int) | |
self.timesteps = timesteps.to(device=device) | |
return timesteps | |
else: | |
raise ValueError(f"Invalid timestep type: {timestep_type}") | |