ramimu's picture
Upload 586 files
1c72248 verified
import math
import torch
from torch.optim import Optimizer
from toolkit.optimizers.optimizer_utils import copy_stochastic, Auto8bitTensor, stochastic_grad_accummulation
class Adam8bit(Optimizer):
"""
Implements Adam optimizer with 8-bit state storage and stochastic rounding.
Arguments:
params (iterable): Iterable of parameters to optimize or dicts defining parameter groups
lr (float): Learning rate (default: 1e-3)
betas (tuple): Coefficients for computing running averages of gradient and its square (default: (0.9, 0.999))
eps (float): Term added to denominator to improve numerical stability (default: 1e-8)
weight_decay (float): Weight decay coefficient (default: 0)
decouple (bool): Use AdamW style decoupled weight decay (default: True)
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, decouple=True):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
decouple=decouple)
super(Adam8bit, self).__init__(params, defaults)
self.is_stochastic_rounding_accumulation = False
# Setup stochastic grad accumulation hooks
for group in self.param_groups:
for param in group['params']:
if param.requires_grad and param.dtype != torch.float32:
self.is_stochastic_rounding_accumulation = True
param.register_post_accumulate_grad_hook(
stochastic_grad_accummulation
)
@property
def supports_memory_efficient_fp16(self):
return False
@property
def supports_flat_params(self):
return True
def step_hook(self):
if not self.is_stochastic_rounding_accumulation:
return
# Copy over stochastically rounded grads
for group in self.param_groups:
for param in group['params']:
if param.requires_grad and hasattr(param, "_accum_grad"):
param.grad = param._accum_grad
del param._accum_grad
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model and returns the loss.
"""
# Call pre step
self.step_hook()
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
beta1, beta2 = group['betas']
eps = group['eps']
lr = group['lr']
decay = group['weight_decay']
decouple = group['decouple']
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.to(torch.float32)
p_fp32 = p.clone().to(torch.float32)
# Apply weight decay (coupled variant)
if decay != 0 and not decouple:
grad.add_(p_fp32.data, alpha=decay)
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = Auto8bitTensor(
torch.zeros_like(p_fp32.data).detach())
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = Auto8bitTensor(
torch.zeros_like(p_fp32.data).detach())
exp_avg = state['exp_avg'].to(torch.float32)
exp_avg_sq = state['exp_avg_sq'].to(torch.float32)
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
# Adam EMA updates
exp_avg.mul_(beta1).add_(grad, alpha=1-beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1-beta2)
# Apply weight decay (decoupled variant)
if decay != 0 and decouple:
p_fp32.data.mul_(1 - lr * decay)
# Bias correction
step_size = lr / bias_correction1
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
# Take step
p_fp32.data.addcdiv_(exp_avg, denom, value=-step_size)
# Update state with stochastic rounding
state['exp_avg'] = Auto8bitTensor(exp_avg)
state['exp_avg_sq'] = Auto8bitTensor(exp_avg_sq)
# Apply stochastic rounding to parameters
copy_stochastic(p.data, p_fp32.data)
return loss
def state_dict(self):
"""Returns the state of the optimizer as a dict."""
state_dict = super().state_dict()
# Convert Auto8bitTensor objects to regular state dicts
for param_id, param_state in state_dict['state'].items():
for key, value in param_state.items():
if isinstance(value, Auto8bitTensor):
param_state[key] = {
'_type': 'Auto8bitTensor',
'state': value.state_dict()
}
return state_dict
def load_state_dict(self, state_dict):
"""Loads the optimizer state."""
# First, load the basic state
super().load_state_dict(state_dict)
# Then convert any Auto8bitTensor states back to objects
for param_id, param_state in self.state.items():
for key, value in param_state.items():
if isinstance(value, dict) and value.get('_type') == 'Auto8bitTensor':
param_state[key] = Auto8bitTensor(value['state'])