Spaces:
Paused
Paused
import math | |
import torch | |
from torch.optim import Optimizer | |
from toolkit.optimizers.optimizer_utils import copy_stochastic, Auto8bitTensor, stochastic_grad_accummulation | |
class Adam8bit(Optimizer): | |
""" | |
Implements Adam optimizer with 8-bit state storage and stochastic rounding. | |
Arguments: | |
params (iterable): Iterable of parameters to optimize or dicts defining parameter groups | |
lr (float): Learning rate (default: 1e-3) | |
betas (tuple): Coefficients for computing running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float): Term added to denominator to improve numerical stability (default: 1e-8) | |
weight_decay (float): Weight decay coefficient (default: 0) | |
decouple (bool): Use AdamW style decoupled weight decay (default: True) | |
""" | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, | |
weight_decay=0, decouple=True): | |
if not 0.0 <= lr: | |
raise ValueError(f"Invalid learning rate: {lr}") | |
if not 0.0 <= eps: | |
raise ValueError(f"Invalid epsilon value: {eps}") | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, | |
decouple=decouple) | |
super(Adam8bit, self).__init__(params, defaults) | |
self.is_stochastic_rounding_accumulation = False | |
# Setup stochastic grad accumulation hooks | |
for group in self.param_groups: | |
for param in group['params']: | |
if param.requires_grad and param.dtype != torch.float32: | |
self.is_stochastic_rounding_accumulation = True | |
param.register_post_accumulate_grad_hook( | |
stochastic_grad_accummulation | |
) | |
def supports_memory_efficient_fp16(self): | |
return False | |
def supports_flat_params(self): | |
return True | |
def step_hook(self): | |
if not self.is_stochastic_rounding_accumulation: | |
return | |
# Copy over stochastically rounded grads | |
for group in self.param_groups: | |
for param in group['params']: | |
if param.requires_grad and hasattr(param, "_accum_grad"): | |
param.grad = param._accum_grad | |
del param._accum_grad | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model and returns the loss. | |
""" | |
# Call pre step | |
self.step_hook() | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
beta1, beta2 = group['betas'] | |
eps = group['eps'] | |
lr = group['lr'] | |
decay = group['weight_decay'] | |
decouple = group['decouple'] | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data.to(torch.float32) | |
p_fp32 = p.clone().to(torch.float32) | |
# Apply weight decay (coupled variant) | |
if decay != 0 and not decouple: | |
grad.add_(p_fp32.data, alpha=decay) | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = Auto8bitTensor( | |
torch.zeros_like(p_fp32.data).detach()) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = Auto8bitTensor( | |
torch.zeros_like(p_fp32.data).detach()) | |
exp_avg = state['exp_avg'].to(torch.float32) | |
exp_avg_sq = state['exp_avg_sq'].to(torch.float32) | |
state['step'] += 1 | |
bias_correction1 = 1 - beta1 ** state['step'] | |
bias_correction2 = 1 - beta2 ** state['step'] | |
# Adam EMA updates | |
exp_avg.mul_(beta1).add_(grad, alpha=1-beta1) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1-beta2) | |
# Apply weight decay (decoupled variant) | |
if decay != 0 and decouple: | |
p_fp32.data.mul_(1 - lr * decay) | |
# Bias correction | |
step_size = lr / bias_correction1 | |
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) | |
# Take step | |
p_fp32.data.addcdiv_(exp_avg, denom, value=-step_size) | |
# Update state with stochastic rounding | |
state['exp_avg'] = Auto8bitTensor(exp_avg) | |
state['exp_avg_sq'] = Auto8bitTensor(exp_avg_sq) | |
# Apply stochastic rounding to parameters | |
copy_stochastic(p.data, p_fp32.data) | |
return loss | |
def state_dict(self): | |
"""Returns the state of the optimizer as a dict.""" | |
state_dict = super().state_dict() | |
# Convert Auto8bitTensor objects to regular state dicts | |
for param_id, param_state in state_dict['state'].items(): | |
for key, value in param_state.items(): | |
if isinstance(value, Auto8bitTensor): | |
param_state[key] = { | |
'_type': 'Auto8bitTensor', | |
'state': value.state_dict() | |
} | |
return state_dict | |
def load_state_dict(self, state_dict): | |
"""Loads the optimizer state.""" | |
# First, load the basic state | |
super().load_state_dict(state_dict) | |
# Then convert any Auto8bitTensor states back to objects | |
for param_id, param_state in self.state.items(): | |
for key, value in param_state.items(): | |
if isinstance(value, dict) and value.get('_type') == 'Auto8bitTensor': | |
param_state[key] = Auto8bitTensor(value['state']) | |