Spaces:
Paused
Paused
import sys | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import weakref | |
from typing import Union, TYPE_CHECKING, Optional | |
from collections import OrderedDict | |
from diffusers import Transformer2DModel, FluxTransformer2DModel | |
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection | |
from toolkit.models.pixtral_vision import PixtralVisionEncoder, PixtralVisionImagePreprocessor, VisionLanguageAdapter | |
from transformers import SiglipImageProcessor, SiglipVisionModel | |
import traceback | |
from toolkit.config_modules import AdapterConfig | |
if TYPE_CHECKING: | |
from toolkit.stable_diffusion_model import StableDiffusion | |
from toolkit.custom_adapter import CustomAdapter | |
# matches distribution of randn | |
class Norm(nn.Module): | |
def __init__(self, target_mean=0.0, target_std=1.0, eps=1e-6): | |
super(Norm, self).__init__() | |
self.target_mean = target_mean | |
self.target_std = target_std | |
self.eps = eps | |
def forward(self, x): | |
dims = tuple(range(1, x.dim())) | |
mean = x.mean(dim=dims, keepdim=True) | |
std = x.std(dim=dims, keepdim=True) | |
# Normalize | |
return self.target_std * (x - mean) / (std + self.eps) + self.target_mean | |
norm_layer = Norm() | |
class SparseAutoencoder(nn.Module): | |
def __init__(self, input_dim, hidden_dim, output_dim): | |
super(SparseAutoencoder, self).__init__() | |
self.encoder = nn.Sequential( | |
nn.Linear(input_dim, hidden_dim), | |
nn.GELU(), | |
nn.Linear(hidden_dim, output_dim), | |
) | |
self.norm = Norm() | |
self.decoder = nn.Sequential( | |
nn.Linear(output_dim, hidden_dim), | |
nn.GELU(), | |
nn.Linear(hidden_dim, input_dim), | |
) | |
self.last_run = None | |
def forward(self, x): | |
self.last_run = { | |
"input": x | |
} | |
x = self.encoder(x) | |
x = self.norm(x) | |
self.last_run["sparse"] = x | |
x = self.decoder(x) | |
x = self.norm(x) | |
self.last_run["output"] = x | |
return x | |
class MLPR(nn.Module): # MLP with reshaping | |
def __init__( | |
self, | |
in_dim, | |
in_channels, | |
out_dim, | |
out_channels, | |
use_residual=True | |
): | |
super().__init__() | |
if use_residual: | |
assert in_dim == out_dim | |
# dont normalize if using conv | |
self.layer_norm = nn.LayerNorm(in_dim) | |
self.fc1 = nn.Linear(in_dim, out_dim) | |
self.act_fn = nn.GELU() | |
self.conv1 = nn.Conv1d(in_channels, out_channels, 1) | |
def forward(self, x): | |
residual = x | |
x = self.layer_norm(x) | |
x = self.fc1(x) | |
x = self.act_fn(x) | |
x = self.conv1(x) | |
return x | |
class AttnProcessor2_0(torch.nn.Module): | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__( | |
self, | |
hidden_size=None, | |
cross_attention_dim=None, | |
): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class VisionDirectAdapterAttnProcessor(nn.Module): | |
r""" | |
Attention processor for Custom TE for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
adapter | |
""" | |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None, | |
adapter_hidden_size=None, has_bias=False, **kwargs): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.adapter_ref: weakref.ref = weakref.ref(adapter) | |
self.hidden_size = hidden_size | |
self.adapter_hidden_size = adapter_hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) | |
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) | |
def is_active(self): | |
return self.adapter_ref().is_active | |
# return False | |
def unconditional_embeds(self): | |
return self.adapter_ref().adapter_ref().unconditional_embeds | |
def conditional_embeds(self): | |
return self.adapter_ref().adapter_ref().conditional_embeds | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
is_active = self.adapter_ref().is_active | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
# will be none if disabled | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# only use one TE or the other. If our adapter is active only use ours | |
if self.is_active and self.conditional_embeds is not None: | |
try: | |
adapter_hidden_states = self.conditional_embeds | |
if adapter_hidden_states.shape[0] == batch_size // 2: | |
adapter_hidden_states = torch.cat([ | |
self.unconditional_embeds, | |
adapter_hidden_states | |
], dim=0) | |
# if it is image embeds, we need to add a 1 dim at inx 1 | |
if len(adapter_hidden_states.shape) == 2: | |
adapter_hidden_states = adapter_hidden_states.unsqueeze(1) | |
# conditional_batch_size = adapter_hidden_states.shape[0] | |
# conditional_query = query | |
# for ip-adapter | |
vd_key = self.to_k_adapter(adapter_hidden_states) | |
vd_value = self.to_v_adapter(adapter_hidden_states) | |
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
vd_hidden_states = F.scaled_dot_product_attention( | |
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
vd_hidden_states = vd_hidden_states.to(query.dtype) | |
hidden_states = hidden_states + self.scale * vd_hidden_states | |
except Exception as e: | |
print("Error in VisionDirectAdapterAttnProcessor") | |
# print shapes of all tensors | |
print(f"hidden_states: {hidden_states.shape}") | |
print(f"adapter_hidden_states: {adapter_hidden_states.shape}") | |
print(f"vd_key: {vd_key.shape}") | |
print(f"vd_value: {vd_value.shape}") | |
print(f"vd_hidden_states: {vd_hidden_states.shape}") | |
print(f"query: {query.shape}") | |
print(f"key: {key.shape}") | |
print(f"value: {value.shape}") | |
print(f"inner_dim: {inner_dim}") | |
print(f"head_dim: {head_dim}") | |
print(f"batch_size: {batch_size}") | |
traceback.print_exc() | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class CustomFluxVDAttnProcessor2_0(torch.nn.Module): | |
"""Attention processor used typically in processing the SD3-like self-attention projections.""" | |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None, | |
adapter_hidden_size=None, has_bias=False, block_idx=0, **kwargs): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.adapter_ref: weakref.ref = weakref.ref(adapter) | |
self.hidden_size = hidden_size | |
self.adapter_hidden_size = adapter_hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.block_idx = block_idx | |
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) | |
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) | |
def is_active(self): | |
return self.adapter_ref().is_active | |
# return False | |
def unconditional_embeds(self): | |
return self.adapter_ref().adapter_ref().unconditional_embeds | |
def conditional_embeds(self): | |
return self.adapter_ref().adapter_ref().conditional_embeds | |
def __call__( | |
self, | |
attn, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
) -> torch.FloatTensor: | |
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
# `sample` projections. | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` | |
if encoder_hidden_states is not None: | |
# `context` projections. | |
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) | |
if attn.norm_added_k is not None: | |
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) | |
# attention | |
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
if image_rotary_emb is not None: | |
from diffusers.models.embeddings import apply_rotary_emb | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# begin ip adapter | |
if self.is_active and self.conditional_embeds is not None: | |
adapter_hidden_states = self.conditional_embeds | |
block_scaler = self.adapter_ref().block_scaler | |
if block_scaler is not None: | |
# add 1 to block scaler so we can decay its weight to 1.0 | |
block_scaler = block_scaler[self.block_idx] + 1.0 | |
if adapter_hidden_states.shape[0] < batch_size: | |
adapter_hidden_states = torch.cat([ | |
self.unconditional_embeds, | |
adapter_hidden_states | |
], dim=0) | |
# if it is image embeds, we need to add a 1 dim at inx 1 | |
if len(adapter_hidden_states.shape) == 2: | |
adapter_hidden_states = adapter_hidden_states.unsqueeze(1) | |
# conditional_batch_size = adapter_hidden_states.shape[0] | |
# conditional_query = query | |
# for ip-adapter | |
vd_key = self.to_k_adapter(adapter_hidden_states) | |
vd_value = self.to_v_adapter(adapter_hidden_states) | |
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
vd_hidden_states = F.scaled_dot_product_attention( | |
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
vd_hidden_states = vd_hidden_states.to(query.dtype) | |
# scale to block scaler | |
if block_scaler is not None: | |
orig_dtype = vd_hidden_states.dtype | |
if block_scaler.dtype != vd_hidden_states.dtype: | |
vd_hidden_states = vd_hidden_states.to(block_scaler.dtype) | |
vd_hidden_states = vd_hidden_states * block_scaler | |
if block_scaler.dtype != orig_dtype: | |
vd_hidden_states = vd_hidden_states.to(orig_dtype) | |
hidden_states = hidden_states + self.scale * vd_hidden_states | |
if encoder_hidden_states is not None: | |
encoder_hidden_states, hidden_states = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[:, encoder_hidden_states.shape[1] :], | |
) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
return hidden_states, encoder_hidden_states | |
else: | |
return hidden_states | |
class VisionDirectAdapter(torch.nn.Module): | |
def __init__( | |
self, | |
adapter: 'CustomAdapter', | |
sd: 'StableDiffusion', | |
vision_model: Union[CLIPVisionModelWithProjection], | |
): | |
super(VisionDirectAdapter, self).__init__() | |
is_pixart = sd.is_pixart | |
is_flux = sd.is_flux | |
self.adapter_ref: weakref.ref = weakref.ref(adapter) | |
self.sd_ref: weakref.ref = weakref.ref(sd) | |
self.config: AdapterConfig = adapter.config | |
self.vision_model_ref: weakref.ref = weakref.ref(vision_model) | |
self.resampler = None | |
is_pixtral = self.config.image_encoder_arch == "pixtral" | |
if adapter.config.clip_layer == "image_embeds": | |
if isinstance(vision_model, SiglipVisionModel): | |
self.token_size = vision_model.config.hidden_size | |
else: | |
self.token_size = vision_model.config.projection_dim | |
else: | |
self.token_size = vision_model.config.hidden_size | |
self.mid_size = self.token_size | |
if self.config.conv_pooling and self.config.conv_pooling_stacks > 1: | |
self.mid_size = self.mid_size * self.config.conv_pooling_stacks | |
# if pixtral, use cross attn dim for more sparse representation if only doing double transformers | |
if is_pixtral and self.config.flux_only_double: | |
if is_flux: | |
hidden_size = 3072 | |
else: | |
hidden_size = sd.unet.config['cross_attention_dim'] | |
self.mid_size = hidden_size | |
# init adapter modules | |
attn_procs = {} | |
unet_sd = sd.unet.state_dict() | |
attn_processor_keys = [] | |
if is_pixart: | |
transformer: Transformer2DModel = sd.unet | |
for i, module in transformer.transformer_blocks.named_children(): | |
attn_processor_keys.append(f"transformer_blocks.{i}.attn1") | |
# cross attention | |
attn_processor_keys.append(f"transformer_blocks.{i}.attn2") | |
elif is_flux: | |
transformer: FluxTransformer2DModel = sd.unet | |
for i, module in transformer.transformer_blocks.named_children(): | |
attn_processor_keys.append(f"transformer_blocks.{i}.attn") | |
if not self.config.flux_only_double: | |
# single transformer blocks do not have cross attn, but we will do them anyway | |
for i, module in transformer.single_transformer_blocks.named_children(): | |
attn_processor_keys.append(f"single_transformer_blocks.{i}.attn") | |
else: | |
attn_processor_keys = list(sd.unet.attn_processors.keys()) | |
current_idx = 0 | |
for name in attn_processor_keys: | |
if is_flux: | |
cross_attention_dim = None | |
else: | |
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim'] | |
if name.startswith("mid_block"): | |
hidden_size = sd.unet.config['block_out_channels'][-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = sd.unet.config['block_out_channels'][block_id] | |
elif name.startswith("transformer") or name.startswith("single_transformer"): | |
if is_flux: | |
hidden_size = 3072 | |
else: | |
hidden_size = sd.unet.config['cross_attention_dim'] | |
else: | |
# they didnt have this, but would lead to undefined below | |
raise ValueError(f"unknown attn processor name: {name}") | |
if cross_attention_dim is None and not is_flux: | |
attn_procs[name] = AttnProcessor2_0() | |
else: | |
layer_name = name.split(".processor")[0] | |
if f"{layer_name}.to_k.weight._data" in unet_sd and is_flux: | |
# is quantized | |
to_k_adapter = torch.randn(hidden_size, hidden_size) * 0.01 | |
to_v_adapter = torch.randn(hidden_size, hidden_size) * 0.01 | |
to_k_adapter = to_k_adapter.to(self.sd_ref().torch_dtype) | |
to_v_adapter = to_v_adapter.to(self.sd_ref().torch_dtype) | |
else: | |
to_k_adapter = unet_sd[layer_name + ".to_k.weight"] | |
to_v_adapter = unet_sd[layer_name + ".to_v.weight"] | |
# add zero padding to the adapter | |
if to_k_adapter.shape[1] < self.mid_size: | |
to_k_adapter = torch.cat([ | |
to_k_adapter, | |
torch.randn(to_k_adapter.shape[0], self.mid_size - to_k_adapter.shape[1]).to( | |
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 | |
], | |
dim=1 | |
) | |
to_v_adapter = torch.cat([ | |
to_v_adapter, | |
torch.randn(to_v_adapter.shape[0], self.mid_size - to_v_adapter.shape[1]).to( | |
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 | |
], | |
dim=1 | |
) | |
elif to_k_adapter.shape[1] > self.mid_size: | |
to_k_adapter = to_k_adapter[:, :self.mid_size] | |
to_v_adapter = to_v_adapter[:, :self.mid_size] | |
# if is_pixart: | |
# to_k_bias = to_k_bias[:self.mid_size] | |
# to_v_bias = to_v_bias[:self.mid_size] | |
else: | |
to_k_adapter = to_k_adapter | |
to_v_adapter = to_v_adapter | |
# if is_pixart: | |
# to_k_bias = to_k_bias | |
# to_v_bias = to_v_bias | |
weights = { | |
"to_k_adapter.weight": to_k_adapter * 0.01, | |
"to_v_adapter.weight": to_v_adapter * 0.01, | |
} | |
# if is_pixart: | |
# weights["to_k_adapter.bias"] = to_k_bias | |
# weights["to_v_adapter.bias"] = to_v_bias\ | |
if is_flux: | |
attn_procs[name] = CustomFluxVDAttnProcessor2_0( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
scale=1.0, | |
adapter=self, | |
adapter_hidden_size=self.mid_size, | |
has_bias=False, | |
block_idx=current_idx | |
) | |
else: | |
attn_procs[name] = VisionDirectAdapterAttnProcessor( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
scale=1.0, | |
adapter=self, | |
adapter_hidden_size=self.mid_size, | |
has_bias=False, | |
) | |
current_idx += 1 | |
attn_procs[name].load_state_dict(weights) | |
if self.sd_ref().is_pixart: | |
# we have to set them ourselves | |
transformer: Transformer2DModel = sd.unet | |
for i, module in transformer.transformer_blocks.named_children(): | |
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"] | |
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"] | |
self.adapter_modules = torch.nn.ModuleList([ | |
transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks)) | |
] + [ | |
transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks)) | |
]) | |
elif self.sd_ref().is_flux: | |
# we have to set them ourselves | |
transformer: FluxTransformer2DModel = sd.unet | |
for i, module in transformer.transformer_blocks.named_children(): | |
module.attn.processor = attn_procs[f"transformer_blocks.{i}.attn"] | |
if not self.config.flux_only_double: | |
# do single blocks too even though they dont have cross attn | |
for i, module in transformer.single_transformer_blocks.named_children(): | |
module.attn.processor = attn_procs[f"single_transformer_blocks.{i}.attn"] | |
if not self.config.flux_only_double: | |
self.adapter_modules = torch.nn.ModuleList( | |
[ | |
transformer.transformer_blocks[i].attn.processor for i in | |
range(len(transformer.transformer_blocks)) | |
] + [ | |
transformer.single_transformer_blocks[i].attn.processor for i in | |
range(len(transformer.single_transformer_blocks)) | |
] | |
) | |
else: | |
self.adapter_modules = torch.nn.ModuleList( | |
[ | |
transformer.transformer_blocks[i].attn.processor for i in | |
range(len(transformer.transformer_blocks)) | |
] | |
) | |
else: | |
sd.unet.set_attn_processor(attn_procs) | |
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values()) | |
num_modules = len(self.adapter_modules) | |
if self.config.train_scaler: | |
self.block_scaler = torch.nn.Parameter(torch.tensor([0.0] * num_modules).to( | |
dtype=torch.float32, | |
device=self.sd_ref().device_torch | |
)) | |
self.block_scaler.data = self.block_scaler.data.to(torch.float32) | |
self.block_scaler.requires_grad = True | |
else: | |
self.block_scaler = None | |
self.pool = None | |
if self.config.num_tokens is not None: | |
# image_encoder_state_dict = self.adapter_ref().vision_encoder.state_dict() | |
# max_seq_len = CLIP tokens + CLS token | |
# max_seq_len = 257 | |
# if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict: | |
# # clip | |
# max_seq_len = int( | |
# image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0]) | |
# self.resampler = MLPR( | |
# in_dim=self.token_size, | |
# in_channels=max_seq_len, | |
# out_dim=self.mid_size, | |
# out_channels=self.config.num_tokens, | |
# ) | |
vision_config = self.adapter_ref().vision_encoder.config | |
# sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2 + 1) | |
# siglip doesnt add 1 | |
sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2) | |
self.pool = nn.Sequential( | |
nn.Conv1d(sequence_length, self.config.num_tokens, 1, bias=False), | |
Norm(), | |
) | |
elif self.config.image_encoder_arch == "pixtral": | |
self.resampler = VisionLanguageAdapter( | |
in_dim=self.token_size, | |
out_dim=self.mid_size, | |
) | |
self.sparse_autoencoder = None | |
if self.config.conv_pooling: | |
vision_config = self.adapter_ref().vision_encoder.config | |
# sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2 + 1) | |
# siglip doesnt add 1 | |
sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2) | |
self.pool = nn.Sequential( | |
nn.Conv1d(sequence_length, self.config.conv_pooling_stacks, 1, bias=False), | |
Norm(), | |
) | |
if self.config.sparse_autoencoder_dim is not None: | |
hidden_dim = self.token_size * 2 | |
if hidden_dim > self.config.sparse_autoencoder_dim: | |
hidden_dim = self.config.sparse_autoencoder_dim | |
self.sparse_autoencoder = SparseAutoencoder( | |
input_dim=self.token_size, | |
hidden_dim=hidden_dim, | |
output_dim=self.config.sparse_autoencoder_dim | |
) | |
if self.config.clip_layer == "image_embeds": | |
self.proj = nn.Linear(self.token_size, self.token_size) | |
def state_dict(self, destination=None, prefix='', keep_vars=False): | |
if self.config.train_scaler: | |
# only return the block scaler | |
if destination is None: | |
destination = OrderedDict() | |
destination[prefix + 'block_scaler'] = self.block_scaler | |
return destination | |
return super().state_dict(destination, prefix, keep_vars) | |
# make a getter to see if is active | |
def is_active(self): | |
return self.adapter_ref().is_active | |
def forward(self, input): | |
# block scaler keeps moving dtypes. make sure it is float32 here | |
# todo remove this when we have a real solution | |
if self.block_scaler is not None and self.block_scaler.dtype != torch.float32: | |
self.block_scaler.data = self.block_scaler.data.to(torch.float32) | |
# if doing image_embeds, normalize here | |
if self.config.clip_layer == "image_embeds": | |
input = norm_layer(input) | |
input = self.proj(input) | |
if self.resampler is not None: | |
input = self.resampler(input) | |
if self.pool is not None: | |
input = self.pool(input) | |
if self.config.conv_pooling_stacks > 1: | |
input = torch.cat(torch.chunk(input, self.config.conv_pooling_stacks, dim=1), dim=2) | |
if self.sparse_autoencoder is not None: | |
input = self.sparse_autoencoder(input) | |
return input | |
def to(self, *args, **kwargs): | |
super().to(*args, **kwargs) | |
if self.block_scaler is not None: | |
if self.block_scaler.dtype != torch.float32: | |
self.block_scaler.data = self.block_scaler.data.to(torch.float32) | |
return self | |
def post_weight_update(self): | |
# force block scaler to be mean of 1 | |
pass | |