ramimu's picture
Upload 586 files
1c72248 verified
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import weakref
from typing import Union, TYPE_CHECKING, Optional
from collections import OrderedDict
from diffusers import Transformer2DModel, FluxTransformer2DModel
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection
from toolkit.models.pixtral_vision import PixtralVisionEncoder, PixtralVisionImagePreprocessor, VisionLanguageAdapter
from transformers import SiglipImageProcessor, SiglipVisionModel
import traceback
from toolkit.config_modules import AdapterConfig
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.custom_adapter import CustomAdapter
# matches distribution of randn
class Norm(nn.Module):
def __init__(self, target_mean=0.0, target_std=1.0, eps=1e-6):
super(Norm, self).__init__()
self.target_mean = target_mean
self.target_std = target_std
self.eps = eps
def forward(self, x):
dims = tuple(range(1, x.dim()))
mean = x.mean(dim=dims, keepdim=True)
std = x.std(dim=dims, keepdim=True)
# Normalize
return self.target_std * (x - mean) / (std + self.eps) + self.target_mean
norm_layer = Norm()
class SparseAutoencoder(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(SparseAutoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, output_dim),
)
self.norm = Norm()
self.decoder = nn.Sequential(
nn.Linear(output_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, input_dim),
)
self.last_run = None
def forward(self, x):
self.last_run = {
"input": x
}
x = self.encoder(x)
x = self.norm(x)
self.last_run["sparse"] = x
x = self.decoder(x)
x = self.norm(x)
self.last_run["output"] = x
return x
class MLPR(nn.Module): # MLP with reshaping
def __init__(
self,
in_dim,
in_channels,
out_dim,
out_channels,
use_residual=True
):
super().__init__()
if use_residual:
assert in_dim == out_dim
# dont normalize if using conv
self.layer_norm = nn.LayerNorm(in_dim)
self.fc1 = nn.Linear(in_dim, out_dim)
self.act_fn = nn.GELU()
self.conv1 = nn.Conv1d(in_channels, out_channels, 1)
def forward(self, x):
residual = x
x = self.layer_norm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.conv1(x)
return x
class AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class VisionDirectAdapterAttnProcessor(nn.Module):
r"""
Attention processor for Custom TE for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
adapter
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
adapter_hidden_size=None, has_bias=False, **kwargs):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.hidden_size = hidden_size
self.adapter_hidden_size = adapter_hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
@property
def is_active(self):
return self.adapter_ref().is_active
# return False
@property
def unconditional_embeds(self):
return self.adapter_ref().adapter_ref().unconditional_embeds
@property
def conditional_embeds(self):
return self.adapter_ref().adapter_ref().conditional_embeds
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
is_active = self.adapter_ref().is_active
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
# will be none if disabled
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# only use one TE or the other. If our adapter is active only use ours
if self.is_active and self.conditional_embeds is not None:
try:
adapter_hidden_states = self.conditional_embeds
if adapter_hidden_states.shape[0] == batch_size // 2:
adapter_hidden_states = torch.cat([
self.unconditional_embeds,
adapter_hidden_states
], dim=0)
# if it is image embeds, we need to add a 1 dim at inx 1
if len(adapter_hidden_states.shape) == 2:
adapter_hidden_states = adapter_hidden_states.unsqueeze(1)
# conditional_batch_size = adapter_hidden_states.shape[0]
# conditional_query = query
# for ip-adapter
vd_key = self.to_k_adapter(adapter_hidden_states)
vd_value = self.to_v_adapter(adapter_hidden_states)
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
vd_hidden_states = F.scaled_dot_product_attention(
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
vd_hidden_states = vd_hidden_states.to(query.dtype)
hidden_states = hidden_states + self.scale * vd_hidden_states
except Exception as e:
print("Error in VisionDirectAdapterAttnProcessor")
# print shapes of all tensors
print(f"hidden_states: {hidden_states.shape}")
print(f"adapter_hidden_states: {adapter_hidden_states.shape}")
print(f"vd_key: {vd_key.shape}")
print(f"vd_value: {vd_value.shape}")
print(f"vd_hidden_states: {vd_hidden_states.shape}")
print(f"query: {query.shape}")
print(f"key: {key.shape}")
print(f"value: {value.shape}")
print(f"inner_dim: {inner_dim}")
print(f"head_dim: {head_dim}")
print(f"batch_size: {batch_size}")
traceback.print_exc()
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class CustomFluxVDAttnProcessor2_0(torch.nn.Module):
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
adapter_hidden_size=None, has_bias=False, block_idx=0, **kwargs):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.hidden_size = hidden_size
self.adapter_hidden_size = adapter_hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.block_idx = block_idx
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
@property
def is_active(self):
return self.adapter_ref().is_active
# return False
@property
def unconditional_embeds(self):
return self.adapter_ref().adapter_ref().unconditional_embeds
@property
def conditional_embeds(self):
return self.adapter_ref().adapter_ref().conditional_embeds
def __call__(
self,
attn,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# begin ip adapter
if self.is_active and self.conditional_embeds is not None:
adapter_hidden_states = self.conditional_embeds
block_scaler = self.adapter_ref().block_scaler
if block_scaler is not None:
# add 1 to block scaler so we can decay its weight to 1.0
block_scaler = block_scaler[self.block_idx] + 1.0
if adapter_hidden_states.shape[0] < batch_size:
adapter_hidden_states = torch.cat([
self.unconditional_embeds,
adapter_hidden_states
], dim=0)
# if it is image embeds, we need to add a 1 dim at inx 1
if len(adapter_hidden_states.shape) == 2:
adapter_hidden_states = adapter_hidden_states.unsqueeze(1)
# conditional_batch_size = adapter_hidden_states.shape[0]
# conditional_query = query
# for ip-adapter
vd_key = self.to_k_adapter(adapter_hidden_states)
vd_value = self.to_v_adapter(adapter_hidden_states)
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
vd_hidden_states = F.scaled_dot_product_attention(
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
vd_hidden_states = vd_hidden_states.to(query.dtype)
# scale to block scaler
if block_scaler is not None:
orig_dtype = vd_hidden_states.dtype
if block_scaler.dtype != vd_hidden_states.dtype:
vd_hidden_states = vd_hidden_states.to(block_scaler.dtype)
vd_hidden_states = vd_hidden_states * block_scaler
if block_scaler.dtype != orig_dtype:
vd_hidden_states = vd_hidden_states.to(orig_dtype)
hidden_states = hidden_states + self.scale * vd_hidden_states
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
class VisionDirectAdapter(torch.nn.Module):
def __init__(
self,
adapter: 'CustomAdapter',
sd: 'StableDiffusion',
vision_model: Union[CLIPVisionModelWithProjection],
):
super(VisionDirectAdapter, self).__init__()
is_pixart = sd.is_pixart
is_flux = sd.is_flux
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.sd_ref: weakref.ref = weakref.ref(sd)
self.config: AdapterConfig = adapter.config
self.vision_model_ref: weakref.ref = weakref.ref(vision_model)
self.resampler = None
is_pixtral = self.config.image_encoder_arch == "pixtral"
if adapter.config.clip_layer == "image_embeds":
if isinstance(vision_model, SiglipVisionModel):
self.token_size = vision_model.config.hidden_size
else:
self.token_size = vision_model.config.projection_dim
else:
self.token_size = vision_model.config.hidden_size
self.mid_size = self.token_size
if self.config.conv_pooling and self.config.conv_pooling_stacks > 1:
self.mid_size = self.mid_size * self.config.conv_pooling_stacks
# if pixtral, use cross attn dim for more sparse representation if only doing double transformers
if is_pixtral and self.config.flux_only_double:
if is_flux:
hidden_size = 3072
else:
hidden_size = sd.unet.config['cross_attention_dim']
self.mid_size = hidden_size
# init adapter modules
attn_procs = {}
unet_sd = sd.unet.state_dict()
attn_processor_keys = []
if is_pixart:
transformer: Transformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
# cross attention
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
elif is_flux:
transformer: FluxTransformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn")
if not self.config.flux_only_double:
# single transformer blocks do not have cross attn, but we will do them anyway
for i, module in transformer.single_transformer_blocks.named_children():
attn_processor_keys.append(f"single_transformer_blocks.{i}.attn")
else:
attn_processor_keys = list(sd.unet.attn_processors.keys())
current_idx = 0
for name in attn_processor_keys:
if is_flux:
cross_attention_dim = None
else:
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = sd.unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = sd.unet.config['block_out_channels'][block_id]
elif name.startswith("transformer") or name.startswith("single_transformer"):
if is_flux:
hidden_size = 3072
else:
hidden_size = sd.unet.config['cross_attention_dim']
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None and not is_flux:
attn_procs[name] = AttnProcessor2_0()
else:
layer_name = name.split(".processor")[0]
if f"{layer_name}.to_k.weight._data" in unet_sd and is_flux:
# is quantized
to_k_adapter = torch.randn(hidden_size, hidden_size) * 0.01
to_v_adapter = torch.randn(hidden_size, hidden_size) * 0.01
to_k_adapter = to_k_adapter.to(self.sd_ref().torch_dtype)
to_v_adapter = to_v_adapter.to(self.sd_ref().torch_dtype)
else:
to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
# add zero padding to the adapter
if to_k_adapter.shape[1] < self.mid_size:
to_k_adapter = torch.cat([
to_k_adapter,
torch.randn(to_k_adapter.shape[0], self.mid_size - to_k_adapter.shape[1]).to(
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
],
dim=1
)
to_v_adapter = torch.cat([
to_v_adapter,
torch.randn(to_v_adapter.shape[0], self.mid_size - to_v_adapter.shape[1]).to(
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
],
dim=1
)
elif to_k_adapter.shape[1] > self.mid_size:
to_k_adapter = to_k_adapter[:, :self.mid_size]
to_v_adapter = to_v_adapter[:, :self.mid_size]
# if is_pixart:
# to_k_bias = to_k_bias[:self.mid_size]
# to_v_bias = to_v_bias[:self.mid_size]
else:
to_k_adapter = to_k_adapter
to_v_adapter = to_v_adapter
# if is_pixart:
# to_k_bias = to_k_bias
# to_v_bias = to_v_bias
weights = {
"to_k_adapter.weight": to_k_adapter * 0.01,
"to_v_adapter.weight": to_v_adapter * 0.01,
}
# if is_pixart:
# weights["to_k_adapter.bias"] = to_k_bias
# weights["to_v_adapter.bias"] = to_v_bias\
if is_flux:
attn_procs[name] = CustomFluxVDAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
adapter=self,
adapter_hidden_size=self.mid_size,
has_bias=False,
block_idx=current_idx
)
else:
attn_procs[name] = VisionDirectAdapterAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
adapter=self,
adapter_hidden_size=self.mid_size,
has_bias=False,
)
current_idx += 1
attn_procs[name].load_state_dict(weights)
if self.sd_ref().is_pixart:
# we have to set them ourselves
transformer: Transformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
self.adapter_modules = torch.nn.ModuleList([
transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks))
] + [
transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks))
])
elif self.sd_ref().is_flux:
# we have to set them ourselves
transformer: FluxTransformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
module.attn.processor = attn_procs[f"transformer_blocks.{i}.attn"]
if not self.config.flux_only_double:
# do single blocks too even though they dont have cross attn
for i, module in transformer.single_transformer_blocks.named_children():
module.attn.processor = attn_procs[f"single_transformer_blocks.{i}.attn"]
if not self.config.flux_only_double:
self.adapter_modules = torch.nn.ModuleList(
[
transformer.transformer_blocks[i].attn.processor for i in
range(len(transformer.transformer_blocks))
] + [
transformer.single_transformer_blocks[i].attn.processor for i in
range(len(transformer.single_transformer_blocks))
]
)
else:
self.adapter_modules = torch.nn.ModuleList(
[
transformer.transformer_blocks[i].attn.processor for i in
range(len(transformer.transformer_blocks))
]
)
else:
sd.unet.set_attn_processor(attn_procs)
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
num_modules = len(self.adapter_modules)
if self.config.train_scaler:
self.block_scaler = torch.nn.Parameter(torch.tensor([0.0] * num_modules).to(
dtype=torch.float32,
device=self.sd_ref().device_torch
))
self.block_scaler.data = self.block_scaler.data.to(torch.float32)
self.block_scaler.requires_grad = True
else:
self.block_scaler = None
self.pool = None
if self.config.num_tokens is not None:
# image_encoder_state_dict = self.adapter_ref().vision_encoder.state_dict()
# max_seq_len = CLIP tokens + CLS token
# max_seq_len = 257
# if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
# # clip
# max_seq_len = int(
# image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
# self.resampler = MLPR(
# in_dim=self.token_size,
# in_channels=max_seq_len,
# out_dim=self.mid_size,
# out_channels=self.config.num_tokens,
# )
vision_config = self.adapter_ref().vision_encoder.config
# sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2 + 1)
# siglip doesnt add 1
sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2)
self.pool = nn.Sequential(
nn.Conv1d(sequence_length, self.config.num_tokens, 1, bias=False),
Norm(),
)
elif self.config.image_encoder_arch == "pixtral":
self.resampler = VisionLanguageAdapter(
in_dim=self.token_size,
out_dim=self.mid_size,
)
self.sparse_autoencoder = None
if self.config.conv_pooling:
vision_config = self.adapter_ref().vision_encoder.config
# sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2 + 1)
# siglip doesnt add 1
sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2)
self.pool = nn.Sequential(
nn.Conv1d(sequence_length, self.config.conv_pooling_stacks, 1, bias=False),
Norm(),
)
if self.config.sparse_autoencoder_dim is not None:
hidden_dim = self.token_size * 2
if hidden_dim > self.config.sparse_autoencoder_dim:
hidden_dim = self.config.sparse_autoencoder_dim
self.sparse_autoencoder = SparseAutoencoder(
input_dim=self.token_size,
hidden_dim=hidden_dim,
output_dim=self.config.sparse_autoencoder_dim
)
if self.config.clip_layer == "image_embeds":
self.proj = nn.Linear(self.token_size, self.token_size)
def state_dict(self, destination=None, prefix='', keep_vars=False):
if self.config.train_scaler:
# only return the block scaler
if destination is None:
destination = OrderedDict()
destination[prefix + 'block_scaler'] = self.block_scaler
return destination
return super().state_dict(destination, prefix, keep_vars)
# make a getter to see if is active
@property
def is_active(self):
return self.adapter_ref().is_active
def forward(self, input):
# block scaler keeps moving dtypes. make sure it is float32 here
# todo remove this when we have a real solution
if self.block_scaler is not None and self.block_scaler.dtype != torch.float32:
self.block_scaler.data = self.block_scaler.data.to(torch.float32)
# if doing image_embeds, normalize here
if self.config.clip_layer == "image_embeds":
input = norm_layer(input)
input = self.proj(input)
if self.resampler is not None:
input = self.resampler(input)
if self.pool is not None:
input = self.pool(input)
if self.config.conv_pooling_stacks > 1:
input = torch.cat(torch.chunk(input, self.config.conv_pooling_stacks, dim=1), dim=2)
if self.sparse_autoencoder is not None:
input = self.sparse_autoencoder(input)
return input
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
if self.block_scaler is not None:
if self.block_scaler.dtype != torch.float32:
self.block_scaler.data = self.block_scaler.data.to(torch.float32)
return self
def post_weight_update(self):
# force block scaler to be mean of 1
pass