Spaces:
Paused
Paused
import sys | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import weakref | |
from typing import Union, TYPE_CHECKING | |
from transformers import T5EncoderModel, CLIPTokenizer, T5Tokenizer, CLIPTextModelWithProjection | |
from toolkit import train_tools | |
from toolkit.prompt_utils import PromptEmbeds | |
from diffusers import Transformer2DModel | |
from toolkit.util.ip_adapter_utils import AttnProcessor2_0 | |
if TYPE_CHECKING: | |
from toolkit.stable_diffusion_model import StableDiffusion | |
from toolkit.custom_adapter import CustomAdapter | |
class TEAdapterCaptionProjection(nn.Module): | |
def __init__(self, caption_channels, adapter: 'TEAdapter'): | |
super().__init__() | |
in_features = caption_channels | |
self.adapter_ref: weakref.ref = weakref.ref(adapter) | |
sd = adapter.sd_ref() | |
self.parent_module_ref = weakref.ref(sd.unet.caption_projection) | |
parent_module = self.parent_module_ref() | |
self.linear_1 = nn.Linear( | |
in_features=in_features, | |
out_features=parent_module.linear_1.out_features, | |
bias=True | |
) | |
self.linear_2 = nn.Linear( | |
in_features=parent_module.linear_2.in_features, | |
out_features=parent_module.linear_2.out_features, | |
bias=True | |
) | |
# save the orig forward | |
parent_module.linear_1.orig_forward = parent_module.linear_1.forward | |
parent_module.linear_2.orig_forward = parent_module.linear_2.forward | |
# replace original forward | |
parent_module.orig_forward = parent_module.forward | |
parent_module.forward = self.forward | |
def is_active(self): | |
return self.adapter_ref().is_active | |
def unconditional_embeds(self): | |
return self.adapter_ref().adapter_ref().unconditional_embeds | |
def conditional_embeds(self): | |
return self.adapter_ref().adapter_ref().conditional_embeds | |
def forward(self, caption): | |
if self.is_active and self.conditional_embeds is not None: | |
adapter_hidden_states = self.conditional_embeds.text_embeds | |
# check if we are doing unconditional | |
if self.unconditional_embeds is not None and adapter_hidden_states.shape[0] != caption.shape[0]: | |
# concat unconditional to match the hidden state batch size | |
if self.unconditional_embeds.text_embeds.shape[0] == 1 and adapter_hidden_states.shape[0] != 1: | |
unconditional = torch.cat([self.unconditional_embeds.text_embeds] * adapter_hidden_states.shape[0], dim=0) | |
else: | |
unconditional = self.unconditional_embeds.text_embeds | |
adapter_hidden_states = torch.cat([unconditional, adapter_hidden_states], dim=0) | |
hidden_states = self.linear_1(adapter_hidden_states) | |
hidden_states = self.parent_module_ref().act_1(hidden_states) | |
hidden_states = self.linear_2(hidden_states) | |
return hidden_states | |
else: | |
return self.parent_module_ref().orig_forward(caption) | |
class TEAdapterAttnProcessor(nn.Module): | |
r""" | |
Attention processor for Custom TE for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
The context length of the image features. | |
adapter | |
""" | |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None, | |
adapter_hidden_size=None, layer_name=None): | |
super().__init__() | |
self.layer_name = layer_name | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.adapter_ref: weakref.ref = weakref.ref(adapter) | |
self.hidden_size = hidden_size | |
self.adapter_hidden_size = adapter_hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.num_tokens = num_tokens | |
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False) | |
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False) | |
def is_active(self): | |
return self.adapter_ref().is_active | |
def unconditional_embeds(self): | |
return self.adapter_ref().adapter_ref().unconditional_embeds | |
def conditional_embeds(self): | |
return self.adapter_ref().adapter_ref().conditional_embeds | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
is_active = self.adapter_ref().is_active | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
# will be none if disabled | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
# only use one TE or the other. If our adapter is active only use ours | |
if self.is_active and self.conditional_embeds is not None: | |
adapter_hidden_states = self.conditional_embeds.text_embeds | |
# check if we are doing unconditional | |
if self.unconditional_embeds is not None and adapter_hidden_states.shape[0] != encoder_hidden_states.shape[0]: | |
# concat unconditional to match the hidden state batch size | |
if self.unconditional_embeds.text_embeds.shape[0] == 1 and adapter_hidden_states.shape[0] != 1: | |
unconditional = torch.cat([self.unconditional_embeds.text_embeds] * adapter_hidden_states.shape[0], dim=0) | |
else: | |
unconditional = self.unconditional_embeds.text_embeds | |
adapter_hidden_states = torch.cat([unconditional, adapter_hidden_states], dim=0) | |
# for ip-adapter | |
key = self.to_k_adapter(adapter_hidden_states) | |
value = self.to_v_adapter(adapter_hidden_states) | |
else: | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
try: | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
except RuntimeError: | |
raise RuntimeError(f"key shape: {key.shape}, value shape: {value.shape}") | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
# remove attn mask if doing clip | |
if self.adapter_ref().adapter_ref().config.text_encoder_arch == "clip": | |
attention_mask = None | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class TEAdapter(torch.nn.Module): | |
def __init__( | |
self, | |
adapter: 'CustomAdapter', | |
sd: 'StableDiffusion', | |
te: Union[T5EncoderModel], | |
tokenizer: CLIPTokenizer | |
): | |
super(TEAdapter, self).__init__() | |
self.adapter_ref: weakref.ref = weakref.ref(adapter) | |
self.sd_ref: weakref.ref = weakref.ref(sd) | |
self.te_ref: weakref.ref = weakref.ref(te) | |
self.tokenizer_ref: weakref.ref = weakref.ref(tokenizer) | |
self.adapter_modules = [] | |
self.caption_projection = None | |
self.embeds_store = [] | |
is_pixart = sd.is_pixart | |
if self.adapter_ref().config.text_encoder_arch == "t5" or self.adapter_ref().config.text_encoder_arch == "pile-t5": | |
self.token_size = self.te_ref().config.d_model | |
else: | |
self.token_size = self.te_ref().config.hidden_size | |
# add text projection if is sdxl | |
self.text_projection = None | |
if sd.is_xl: | |
clip_with_projection: CLIPTextModelWithProjection = sd.text_encoder[0] | |
self.text_projection = nn.Linear(te.config.hidden_size, clip_with_projection.config.projection_dim, bias=False) | |
# init adapter modules | |
attn_procs = {} | |
unet_sd = sd.unet.state_dict() | |
attn_dict_map = { | |
} | |
module_idx = 0 | |
# init adapter modules | |
attn_procs = {} | |
unet_sd = sd.unet.state_dict() | |
attn_processor_keys = [] | |
if is_pixart: | |
transformer: Transformer2DModel = sd.unet | |
for i, module in transformer.transformer_blocks.named_children(): | |
attn_processor_keys.append(f"transformer_blocks.{i}.attn1") | |
# cross attention | |
attn_processor_keys.append(f"transformer_blocks.{i}.attn2") | |
else: | |
attn_processor_keys = list(sd.unet.attn_processors.keys()) | |
attn_processor_names = [] | |
blocks = [] | |
transformer_blocks = [] | |
for name in attn_processor_keys: | |
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") or name.endswith("attn1") else \ | |
sd.unet.config['cross_attention_dim'] | |
if name.startswith("mid_block"): | |
hidden_size = sd.unet.config['block_out_channels'][-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = sd.unet.config['block_out_channels'][block_id] | |
elif name.startswith("transformer"): | |
hidden_size = sd.unet.config['cross_attention_dim'] | |
else: | |
# they didnt have this, but would lead to undefined below | |
raise ValueError(f"unknown attn processor name: {name}") | |
if cross_attention_dim is None: | |
attn_procs[name] = AttnProcessor2_0() | |
else: | |
layer_name = name.split(".processor")[0] | |
to_k_adapter = unet_sd[layer_name + ".to_k.weight"] | |
to_v_adapter = unet_sd[layer_name + ".to_v.weight"] | |
# add zero padding to the adapter | |
if to_k_adapter.shape[1] < self.token_size: | |
to_k_adapter = torch.cat([ | |
to_k_adapter, | |
torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to( | |
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 | |
], | |
dim=1 | |
) | |
to_v_adapter = torch.cat([ | |
to_v_adapter, | |
torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to( | |
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 | |
], | |
dim=1 | |
) | |
elif to_k_adapter.shape[1] > self.token_size: | |
to_k_adapter = to_k_adapter[:, :self.token_size] | |
to_v_adapter = to_v_adapter[:, :self.token_size] | |
else: | |
to_k_adapter = to_k_adapter | |
to_v_adapter = to_v_adapter | |
# todo resize to the TE hidden size | |
weights = { | |
"to_k_adapter.weight": to_k_adapter, | |
"to_v_adapter.weight": to_v_adapter, | |
} | |
if self.sd_ref().is_pixart: | |
# pixart is much more sensitive | |
weights = { | |
"to_k_adapter.weight": weights["to_k_adapter.weight"] * 0.01, | |
"to_v_adapter.weight": weights["to_v_adapter.weight"] * 0.01, | |
} | |
attn_procs[name] = TEAdapterAttnProcessor( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
scale=1.0, | |
num_tokens=self.adapter_ref().config.num_tokens, | |
adapter=self, | |
adapter_hidden_size=self.token_size, | |
layer_name=layer_name | |
) | |
attn_procs[name].load_state_dict(weights) | |
self.adapter_modules.append(attn_procs[name]) | |
if self.sd_ref().is_pixart: | |
# we have to set them ourselves | |
transformer: Transformer2DModel = sd.unet | |
for i, module in transformer.transformer_blocks.named_children(): | |
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"] | |
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"] | |
self.adapter_modules = torch.nn.ModuleList( | |
[ | |
transformer.transformer_blocks[i].attn2.processor for i in | |
range(len(transformer.transformer_blocks)) | |
]) | |
self.caption_projection = TEAdapterCaptionProjection( | |
caption_channels=self.token_size, | |
adapter=self, | |
) | |
else: | |
sd.unet.set_attn_processor(attn_procs) | |
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values()) | |
# make a getter to see if is active | |
def is_active(self): | |
return self.adapter_ref().is_active | |
def encode_text(self, text): | |
te: T5EncoderModel = self.te_ref() | |
tokenizer: T5Tokenizer = self.tokenizer_ref() | |
attn_mask_float = None | |
# input_ids = tokenizer( | |
# text, | |
# max_length=77, | |
# padding="max_length", | |
# truncation=True, | |
# return_tensors="pt", | |
# ).input_ids.to(te.device) | |
# outputs = te(input_ids=input_ids) | |
# outputs = outputs.last_hidden_state | |
if self.adapter_ref().config.text_encoder_arch == "clip": | |
embeds = train_tools.encode_prompts( | |
tokenizer, | |
te, | |
text, | |
truncate=True, | |
max_length=self.adapter_ref().config.num_tokens, | |
) | |
attention_mask = torch.ones(embeds.shape[:2], device=embeds.device) | |
elif self.adapter_ref().config.text_encoder_arch == "pile-t5": | |
# just use aura pile | |
embeds, attention_mask = train_tools.encode_prompts_auraflow( | |
tokenizer, | |
te, | |
text, | |
truncate=True, | |
max_length=self.adapter_ref().config.num_tokens, | |
) | |
else: | |
embeds, attention_mask = train_tools.encode_prompts_pixart( | |
tokenizer, | |
te, | |
text, | |
truncate=True, | |
max_length=self.adapter_ref().config.num_tokens, | |
) | |
if attention_mask is not None: | |
attn_mask_float = attention_mask.to(embeds.device, dtype=embeds.dtype) | |
if self.text_projection is not None: | |
# pool the output of embeds ignoring 0 in the attention mask | |
if attn_mask_float is not None: | |
pooled_output = embeds * attn_mask_float.unsqueeze(-1) | |
else: | |
pooled_output = embeds | |
# reduce along dim 1 while maintaining batch and dim 2 | |
pooled_output_sum = pooled_output.sum(dim=1) | |
if attn_mask_float is not None: | |
attn_mask_sum = attn_mask_float.sum(dim=1).unsqueeze(-1) | |
pooled_output = pooled_output_sum / attn_mask_sum | |
pooled_embeds = self.text_projection(pooled_output) | |
prompt_embeds = PromptEmbeds( | |
(embeds, pooled_embeds), | |
attention_mask=attention_mask, | |
).detach() | |
else: | |
prompt_embeds = PromptEmbeds( | |
embeds, | |
attention_mask=attention_mask, | |
).detach() | |
return prompt_embeds | |
def forward(self, input): | |
return input | |