Spaces:
Paused
Paused
import sys | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import weakref | |
from typing import Union, TYPE_CHECKING | |
from diffusers import Transformer2DModel | |
if TYPE_CHECKING: | |
from toolkit.stable_diffusion_model import StableDiffusion | |
from toolkit.custom_adapter import CustomAdapter | |
class AttnProcessor2_0(torch.nn.Module): | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__( | |
self, | |
hidden_size=None, | |
cross_attention_dim=None, | |
): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class SingleValueAdapterAttnProcessor(nn.Module): | |
r""" | |
Attention processor for Custom TE for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
adapter | |
""" | |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None, | |
adapter_hidden_size=None, has_bias=False, **kwargs): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.adapter_ref: weakref.ref = weakref.ref(adapter) | |
self.hidden_size = hidden_size | |
self.adapter_hidden_size = adapter_hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) | |
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) | |
def is_active(self): | |
return self.adapter_ref().is_active | |
# return False | |
def unconditional_embeds(self): | |
return self.adapter_ref().adapter_ref().unconditional_embeds | |
def conditional_embeds(self): | |
return self.adapter_ref().adapter_ref().conditional_embeds | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
is_active = self.adapter_ref().is_active | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
# will be none if disabled | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# only use one TE or the other. If our adapter is active only use ours | |
if self.is_active and self.conditional_embeds is not None: | |
adapter_hidden_states = self.conditional_embeds | |
if adapter_hidden_states.shape[0] < batch_size: | |
# doing cfg | |
adapter_hidden_states = torch.cat([ | |
self.unconditional_embeds, | |
adapter_hidden_states | |
], dim=0) | |
# needs to be shape (batch, 1, 1) | |
if len(adapter_hidden_states.shape) == 2: | |
adapter_hidden_states = adapter_hidden_states.unsqueeze(1) | |
# conditional_batch_size = adapter_hidden_states.shape[0] | |
# conditional_query = query | |
# for ip-adapter | |
vd_key = self.to_k_adapter(adapter_hidden_states) | |
vd_value = self.to_v_adapter(adapter_hidden_states) | |
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
vd_hidden_states = F.scaled_dot_product_attention( | |
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
vd_hidden_states = vd_hidden_states.to(query.dtype) | |
hidden_states = hidden_states + self.scale * vd_hidden_states | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class SingleValueAdapter(torch.nn.Module): | |
def __init__( | |
self, | |
adapter: 'CustomAdapter', | |
sd: 'StableDiffusion', | |
num_values: int = 1, | |
): | |
super(SingleValueAdapter, self).__init__() | |
is_pixart = sd.is_pixart | |
self.adapter_ref: weakref.ref = weakref.ref(adapter) | |
self.sd_ref: weakref.ref = weakref.ref(sd) | |
self.token_size = num_values | |
# init adapter modules | |
attn_procs = {} | |
unet_sd = sd.unet.state_dict() | |
attn_processor_keys = [] | |
if is_pixart: | |
transformer: Transformer2DModel = sd.unet | |
for i, module in transformer.transformer_blocks.named_children(): | |
attn_processor_keys.append(f"transformer_blocks.{i}.attn1") | |
# cross attention | |
attn_processor_keys.append(f"transformer_blocks.{i}.attn2") | |
else: | |
attn_processor_keys = list(sd.unet.attn_processors.keys()) | |
for name in attn_processor_keys: | |
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim'] | |
if name.startswith("mid_block"): | |
hidden_size = sd.unet.config['block_out_channels'][-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = sd.unet.config['block_out_channels'][block_id] | |
elif name.startswith("transformer"): | |
hidden_size = sd.unet.config['cross_attention_dim'] | |
else: | |
# they didnt have this, but would lead to undefined below | |
raise ValueError(f"unknown attn processor name: {name}") | |
if cross_attention_dim is None: | |
attn_procs[name] = AttnProcessor2_0() | |
else: | |
layer_name = name.split(".processor")[0] | |
to_k_adapter = unet_sd[layer_name + ".to_k.weight"] | |
to_v_adapter = unet_sd[layer_name + ".to_v.weight"] | |
# if is_pixart: | |
# to_k_bias = unet_sd[layer_name + ".to_k.bias"] | |
# to_v_bias = unet_sd[layer_name + ".to_v.bias"] | |
# else: | |
# to_k_bias = None | |
# to_v_bias = None | |
# add zero padding to the adapter | |
if to_k_adapter.shape[1] < self.token_size: | |
to_k_adapter = torch.cat([ | |
to_k_adapter, | |
torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to( | |
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 | |
], | |
dim=1 | |
) | |
to_v_adapter = torch.cat([ | |
to_v_adapter, | |
torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to( | |
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 | |
], | |
dim=1 | |
) | |
# if is_pixart: | |
# to_k_bias = torch.cat([ | |
# to_k_bias, | |
# torch.zeros(self.token_size - to_k_adapter.shape[1]).to( | |
# to_k_adapter.device, dtype=to_k_adapter.dtype) | |
# ], | |
# dim=0 | |
# ) | |
# to_v_bias = torch.cat([ | |
# to_v_bias, | |
# torch.zeros(self.token_size - to_v_adapter.shape[1]).to( | |
# to_k_adapter.device, dtype=to_k_adapter.dtype) | |
# ], | |
# dim=0 | |
# ) | |
elif to_k_adapter.shape[1] > self.token_size: | |
to_k_adapter = to_k_adapter[:, :self.token_size] | |
to_v_adapter = to_v_adapter[:, :self.token_size] | |
# if is_pixart: | |
# to_k_bias = to_k_bias[:self.token_size] | |
# to_v_bias = to_v_bias[:self.token_size] | |
else: | |
to_k_adapter = to_k_adapter | |
to_v_adapter = to_v_adapter | |
# if is_pixart: | |
# to_k_bias = to_k_bias | |
# to_v_bias = to_v_bias | |
weights = { | |
"to_k_adapter.weight": to_k_adapter * 0.01, | |
"to_v_adapter.weight": to_v_adapter * 0.01, | |
} | |
# if is_pixart: | |
# weights["to_k_adapter.bias"] = to_k_bias | |
# weights["to_v_adapter.bias"] = to_v_bias | |
attn_procs[name] = SingleValueAdapterAttnProcessor( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
scale=1.0, | |
adapter=self, | |
adapter_hidden_size=self.token_size, | |
has_bias=False, | |
) | |
attn_procs[name].load_state_dict(weights) | |
if self.sd_ref().is_pixart: | |
# we have to set them ourselves | |
transformer: Transformer2DModel = sd.unet | |
for i, module in transformer.transformer_blocks.named_children(): | |
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"] | |
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"] | |
self.adapter_modules = torch.nn.ModuleList([ | |
transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks)) | |
] + [ | |
transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks)) | |
]) | |
else: | |
sd.unet.set_attn_processor(attn_procs) | |
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values()) | |
# make a getter to see if is active | |
def is_active(self): | |
return self.adapter_ref().is_active | |
def forward(self, input): | |
return input | |