Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
from toolkit.models.zipper_resampler import ContextualAlphaMask | |
# Conv1d MLP | |
# MLP that can alternately be used as a conv1d on dim 1 | |
class MLPC(nn.Module): | |
def __init__( | |
self, | |
in_dim, | |
out_dim, | |
hidden_dim, | |
do_conv=False, | |
use_residual=True | |
): | |
super().__init__() | |
self.do_conv = do_conv | |
if use_residual: | |
assert in_dim == out_dim | |
# dont normalize if using conv | |
if not do_conv: | |
self.layernorm = nn.LayerNorm(in_dim) | |
if do_conv: | |
self.fc1 = nn.Conv1d(in_dim, hidden_dim, 1) | |
self.fc2 = nn.Conv1d(hidden_dim, out_dim, 1) | |
else: | |
self.fc1 = nn.Linear(in_dim, hidden_dim) | |
self.fc2 = nn.Linear(hidden_dim, out_dim) | |
self.use_residual = use_residual | |
self.act_fn = nn.GELU() | |
def forward(self, x): | |
residual = x | |
if not self.do_conv: | |
x = self.layernorm(x) | |
x = self.fc1(x) | |
x = self.act_fn(x) | |
x = self.fc2(x) | |
if self.use_residual: | |
x = x + residual | |
return x | |
class ZipperBlock(nn.Module): | |
def __init__( | |
self, | |
in_size, | |
in_tokens, | |
out_size, | |
out_tokens, | |
hidden_size, | |
hidden_tokens, | |
): | |
super().__init__() | |
self.in_size = in_size | |
self.in_tokens = in_tokens | |
self.out_size = out_size | |
self.out_tokens = out_tokens | |
self.hidden_size = hidden_size | |
self.hidden_tokens = hidden_tokens | |
# permute to (batch_size, out_size, in_tokens) | |
self.zip_token = MLPC( | |
in_dim=self.in_tokens, | |
out_dim=self.out_tokens, | |
hidden_dim=self.hidden_tokens, | |
do_conv=True, # no need to permute | |
use_residual=False | |
) | |
# permute to (batch_size, out_tokens, out_size) | |
# in shpae: (batch_size, in_tokens, in_size) | |
self.zip_size = MLPC( | |
in_dim=self.in_size, | |
out_dim=self.out_size, | |
hidden_dim=self.hidden_size, | |
use_residual=False | |
) | |
def forward(self, x): | |
x = self.zip_token(x) | |
x = self.zip_size(x) | |
return x | |
# CLIPFusionModule | |
# Fuses any size of vision and text embeddings into a single embedding. | |
# remaps tokens and vectors. | |
class CLIPFusionModule(nn.Module): | |
def __init__( | |
self, | |
text_hidden_size: int = 768, | |
text_tokens: int = 77, | |
vision_hidden_size: int = 1024, | |
vision_tokens: int = 257, | |
num_blocks: int = 1, | |
): | |
super(CLIPFusionModule, self).__init__() | |
self.text_hidden_size = text_hidden_size | |
self.text_tokens = text_tokens | |
self.vision_hidden_size = vision_hidden_size | |
self.vision_tokens = vision_tokens | |
self.resampler = ZipperBlock( | |
in_size=self.vision_hidden_size, | |
in_tokens=self.vision_tokens, | |
out_size=self.text_hidden_size, | |
out_tokens=self.text_tokens, | |
hidden_size=self.vision_hidden_size * 2, | |
hidden_tokens=self.vision_tokens * 2 | |
) | |
self.zipper_blocks = torch.nn.ModuleList([ | |
ZipperBlock( | |
in_size=self.text_hidden_size * 2, | |
in_tokens=self.text_tokens, | |
out_size=self.text_hidden_size, | |
out_tokens=self.text_tokens, | |
hidden_size=self.text_hidden_size * 2, | |
hidden_tokens=self.text_tokens * 2 | |
) for i in range(num_blocks) | |
]) | |
self.ctx_alpha = ContextualAlphaMask( | |
dim=self.text_hidden_size, | |
) | |
self.alpha = nn.Parameter(torch.zeros([text_tokens]) + 0.01) | |
def forward(self, text_embeds, vision_embeds): | |
# text_embeds = (batch_size, 77, 768) | |
# vision_embeds = (batch_size, 257, 1024) | |
# output = (batch_size, 77, 768) | |
vision_embeds = self.resampler(vision_embeds) | |
x = vision_embeds | |
for i, block in enumerate(self.zipper_blocks): | |
res = x | |
x = torch.cat([text_embeds, x], dim=-1) | |
x = block(x) | |
x = x + res | |
# alpha mask | |
ctx_alpha = self.ctx_alpha(text_embeds) | |
# reshape alpha to (1, 77, 1) | |
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) | |
x = ctx_alpha * x * alpha | |
x = x + text_embeds | |
return x | |