Spaces:
Paused
Paused
import math | |
import weakref | |
import torch | |
import torch.nn as nn | |
from typing import TYPE_CHECKING, List, Dict, Any | |
from toolkit.models.clip_fusion import ZipperBlock | |
from toolkit.models.zipper_resampler import ZipperModule, ZipperResampler | |
import sys | |
from collections import OrderedDict | |
if TYPE_CHECKING: | |
from toolkit.lora_special import LoRAModule | |
from toolkit.stable_diffusion_model import StableDiffusion | |
class TransformerBlock(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, batch_first=True) | |
self.cross_attn = nn.MultiheadAttention(d_model, nhead, batch_first=True) | |
self.feed_forward = nn.Sequential( | |
nn.Linear(d_model, dim_feedforward), | |
nn.ReLU(), | |
nn.Linear(dim_feedforward, d_model) | |
) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.norm3 = nn.LayerNorm(d_model) | |
def forward(self, x, cross_attn_input): | |
# Self-attention | |
attn_output, _ = self.self_attn(x, x, x) | |
x = self.norm1(x + attn_output) | |
# Cross-attention | |
cross_attn_output, _ = self.cross_attn(x, cross_attn_input, cross_attn_input) | |
x = self.norm2(x + cross_attn_output) | |
# Feed-forward | |
ff_output = self.feed_forward(x) | |
x = self.norm3(x + ff_output) | |
return x | |
class InstantLoRAMidModule(torch.nn.Module): | |
def __init__( | |
self, | |
index: int, | |
lora_module: 'LoRAModule', | |
instant_lora_module: 'InstantLoRAModule', | |
up_shape: list = None, | |
down_shape: list = None, | |
): | |
super(InstantLoRAMidModule, self).__init__() | |
self.up_shape = up_shape | |
self.down_shape = down_shape | |
self.index = index | |
self.lora_module_ref = weakref.ref(lora_module) | |
self.instant_lora_module_ref = weakref.ref(instant_lora_module) | |
self.embed = None | |
def down_forward(self, x, *args, **kwargs): | |
# get the embed | |
self.embed = self.instant_lora_module_ref().img_embeds[self.index] | |
down_size = math.prod(self.down_shape) | |
down_weight = self.embed[:, :down_size] | |
batch_size = x.shape[0] | |
# unconditional | |
if down_weight.shape[0] * 2 == batch_size: | |
down_weight = torch.cat([down_weight] * 2, dim=0) | |
weight_chunks = torch.chunk(down_weight, batch_size, dim=0) | |
x_chunks = torch.chunk(x, batch_size, dim=0) | |
x_out = [] | |
for i in range(batch_size): | |
weight_chunk = weight_chunks[i] | |
x_chunk = x_chunks[i] | |
# reshape | |
weight_chunk = weight_chunk.view(self.down_shape) | |
# check if is conv or linear | |
if len(weight_chunk.shape) == 4: | |
padding = 0 | |
if weight_chunk.shape[-1] == 3: | |
padding = 1 | |
x_chunk = nn.functional.conv2d(x_chunk, weight_chunk, padding=padding) | |
else: | |
# run a simple linear layer with the down weight | |
x_chunk = x_chunk @ weight_chunk.T | |
x_out.append(x_chunk) | |
x = torch.cat(x_out, dim=0) | |
return x | |
def up_forward(self, x, *args, **kwargs): | |
self.embed = self.instant_lora_module_ref().img_embeds[self.index] | |
up_size = math.prod(self.up_shape) | |
up_weight = self.embed[:, -up_size:] | |
batch_size = x.shape[0] | |
# unconditional | |
if up_weight.shape[0] * 2 == batch_size: | |
up_weight = torch.cat([up_weight] * 2, dim=0) | |
weight_chunks = torch.chunk(up_weight, batch_size, dim=0) | |
x_chunks = torch.chunk(x, batch_size, dim=0) | |
x_out = [] | |
for i in range(batch_size): | |
weight_chunk = weight_chunks[i] | |
x_chunk = x_chunks[i] | |
# reshape | |
weight_chunk = weight_chunk.view(self.up_shape) | |
# check if is conv or linear | |
if len(weight_chunk.shape) == 4: | |
padding = 0 | |
if weight_chunk.shape[-1] == 3: | |
padding = 1 | |
x_chunk = nn.functional.conv2d(x_chunk, weight_chunk, padding=padding) | |
else: | |
# run a simple linear layer with the down weight | |
x_chunk = x_chunk @ weight_chunk.T | |
x_out.append(x_chunk) | |
x = torch.cat(x_out, dim=0) | |
return x | |
# Initialize the network | |
# num_blocks = 8 | |
# d_model = 1024 # Adjust as needed | |
# nhead = 16 # Adjust as needed | |
# dim_feedforward = 4096 # Adjust as needed | |
# latent_dim = 1695744 | |
class LoRAFormer(torch.nn.Module): | |
def __init__( | |
self, | |
num_blocks, | |
d_model=1024, | |
nhead=16, | |
dim_feedforward=4096, | |
sd: 'StableDiffusion'=None, | |
): | |
super(LoRAFormer, self).__init__() | |
# self.linear = torch.nn.Linear(2, 1) | |
self.sd_ref = weakref.ref(sd) | |
self.dim = sd.network.lora_dim | |
# stores the projection vector. Grabbed by modules | |
self.img_embeds: List[torch.Tensor] = None | |
# disable merging in. It is slower on inference | |
self.sd_ref().network.can_merge_in = False | |
self.ilora_modules = torch.nn.ModuleList() | |
lora_modules = self.sd_ref().network.get_all_modules() | |
output_size = 0 | |
self.embed_lengths = [] | |
self.weight_mapping = [] | |
for idx, lora_module in enumerate(lora_modules): | |
module_dict = lora_module.state_dict() | |
down_shape = list(module_dict['lora_down.weight'].shape) | |
up_shape = list(module_dict['lora_up.weight'].shape) | |
self.weight_mapping.append([lora_module.lora_name, [down_shape, up_shape]]) | |
module_size = math.prod(down_shape) + math.prod(up_shape) | |
output_size += module_size | |
self.embed_lengths.append(module_size) | |
# add a new mid module that will take the original forward and add a vector to it | |
# this will be used to add the vector to the original forward | |
instant_module = InstantLoRAMidModule( | |
idx, | |
lora_module, | |
self, | |
up_shape=up_shape, | |
down_shape=down_shape | |
) | |
self.ilora_modules.append(instant_module) | |
# replace the LoRA forwards | |
lora_module.lora_down.forward = instant_module.down_forward | |
lora_module.lora_up.forward = instant_module.up_forward | |
self.output_size = output_size | |
self.latent = nn.Parameter(torch.randn(1, output_size)) | |
self.latent_proj = nn.Linear(output_size, d_model) | |
self.blocks = nn.ModuleList([ | |
TransformerBlock(d_model, nhead, dim_feedforward) | |
for _ in range(num_blocks) | |
]) | |
self.final_proj = nn.Linear(d_model, output_size) | |
self.migrate_weight_mapping() | |
def migrate_weight_mapping(self): | |
return | |
# # changes the names of the modules to common ones | |
# keymap = self.sd_ref().network.get_keymap() | |
# save_keymap = {} | |
# if keymap is not None: | |
# for ldm_key, diffusers_key in keymap.items(): | |
# # invert them | |
# save_keymap[diffusers_key] = ldm_key | |
# | |
# new_keymap = {} | |
# for key, value in self.weight_mapping: | |
# if key in save_keymap: | |
# new_keymap[save_keymap[key]] = value | |
# else: | |
# print(f"Key {key} not found in keymap") | |
# new_keymap[key] = value | |
# self.weight_mapping = new_keymap | |
# else: | |
# print("No keymap found. Using default names") | |
# return | |
def forward(self, img_embeds): | |
# expand token rank if only rank 2 | |
if len(img_embeds.shape) == 2: | |
img_embeds = img_embeds.unsqueeze(1) | |
# resample the image embeddings | |
img_embeds = self.resampler(img_embeds) | |
img_embeds = self.proj_module(img_embeds) | |
if len(img_embeds.shape) == 3: | |
# merge the heads | |
img_embeds = img_embeds.mean(dim=1) | |
self.img_embeds = [] | |
# get all the slices | |
start = 0 | |
for length in self.embed_lengths: | |
self.img_embeds.append(img_embeds[:, start:start+length]) | |
start += length | |
def get_additional_save_metadata(self) -> Dict[str, Any]: | |
# save the weight mapping | |
return { | |
"weight_mapping": self.weight_mapping, | |
"num_heads": self.num_heads, | |
"vision_hidden_size": self.vision_hidden_size, | |
"head_dim": self.head_dim, | |
"vision_tokens": self.vision_tokens, | |
"output_size": self.output_size, | |
} | |