Spaces:
Paused
Paused
import torch | |
from .llvae import LosslessLatentEncoder | |
def total_variation(image): | |
""" | |
Compute normalized total variation. | |
Inputs: | |
- image: PyTorch Variable of shape (N, C, H, W) | |
Returns: | |
- TV: total variation normalized by the number of elements | |
""" | |
n_elements = image.shape[1] * image.shape[2] * image.shape[3] | |
return ((torch.sum(torch.abs(image[:, :, :, :-1] - image[:, :, :, 1:])) + | |
torch.sum(torch.abs(image[:, :, :-1, :] - image[:, :, 1:, :]))) / n_elements) | |
class ComparativeTotalVariation(torch.nn.Module): | |
""" | |
Compute the comparative loss in tv between two images. to match their tv | |
""" | |
def forward(self, pred, target): | |
return torch.abs(total_variation(pred) - total_variation(target)) | |
# Gradient penalty | |
def get_gradient_penalty(critic, real, fake, device): | |
with torch.autocast(device_type='cuda'): | |
real = real.float() | |
fake = fake.float() | |
alpha = torch.rand(real.size(0), 1, 1, 1).to(device).float() | |
interpolates = (alpha * real + ((1 - alpha) * fake)).requires_grad_(True) | |
if torch.isnan(interpolates).any(): | |
print('d_interpolates is nan') | |
d_interpolates = critic(interpolates) | |
fake = torch.ones(real.size(0), 1, device=device) | |
if torch.isnan(d_interpolates).any(): | |
print('fake is nan') | |
gradients = torch.autograd.grad( | |
outputs=d_interpolates, | |
inputs=interpolates, | |
grad_outputs=fake, | |
create_graph=True, | |
retain_graph=True, | |
only_inputs=True, | |
)[0] | |
# see if any are nan | |
if torch.isnan(gradients).any(): | |
print('gradients is nan') | |
gradients = gradients.view(gradients.size(0), -1) | |
gradient_norm = gradients.norm(2, dim=1) | |
gradient_penalty = ((gradient_norm - 1) ** 2).mean() | |
return gradient_penalty.float() | |
class PatternLoss(torch.nn.Module): | |
def __init__(self, pattern_size=4, dtype=torch.float32): | |
super().__init__() | |
self.pattern_size = pattern_size | |
self.llvae_encoder = LosslessLatentEncoder(3, pattern_size, dtype=dtype) | |
def forward(self, pred, target): | |
pred_latents = self.llvae_encoder(pred) | |
target_latents = self.llvae_encoder(target) | |
matrix_pixels = self.pattern_size * self.pattern_size | |
color_chans = pred_latents.shape[1] // 3 | |
# pytorch | |
r_chans, g_chans, b_chans = torch.split(pred_latents, [color_chans, color_chans, color_chans], 1) | |
r_chans_target, g_chans_target, b_chans_target = torch.split(target_latents, [color_chans, color_chans, color_chans], 1) | |
def separated_chan_loss(latent_chan): | |
nonlocal matrix_pixels | |
chan_mean = torch.mean(latent_chan, dim=[1, 2, 3]) | |
chan_splits = torch.split(latent_chan, [1 for i in range(matrix_pixels)], 1) | |
chan_loss = None | |
for chan in chan_splits: | |
this_mean = torch.mean(chan, dim=[1, 2, 3]) | |
this_chan_loss = torch.abs(this_mean - chan_mean) | |
if chan_loss is None: | |
chan_loss = this_chan_loss | |
else: | |
chan_loss = chan_loss + this_chan_loss | |
chan_loss = chan_loss * (1 / matrix_pixels) | |
return chan_loss | |
r_chan_loss = torch.abs(separated_chan_loss(r_chans) - separated_chan_loss(r_chans_target)) | |
g_chan_loss = torch.abs(separated_chan_loss(g_chans) - separated_chan_loss(g_chans_target)) | |
b_chan_loss = torch.abs(separated_chan_loss(b_chans) - separated_chan_loss(b_chans_target)) | |
return (r_chan_loss + g_chan_loss + b_chan_loss) * 0.3333 | |