Spaces:
Paused
Paused
import copy | |
import json | |
import math | |
import weakref | |
import os | |
import re | |
import sys | |
from typing import List, Optional, Dict, Type, Union | |
import torch | |
from diffusers import UNet2DConditionModel, PixArtTransformer2DModel, AuraFlowTransformer2DModel | |
from transformers import CLIPTextModel | |
from toolkit.models.lokr import LokrModule | |
from .config_modules import NetworkConfig | |
from .lorm import count_parameters | |
from .network_mixins import ToolkitNetworkMixin, ToolkitModuleMixin, ExtractableModuleMixin | |
from toolkit.kohya_lora import LoRANetwork | |
from toolkit.models.DoRA import DoRAModule | |
from typing import TYPE_CHECKING | |
if TYPE_CHECKING: | |
from toolkit.stable_diffusion_model import StableDiffusion | |
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") | |
# diffusers specific stuff | |
LINEAR_MODULES = [ | |
'Linear', | |
'LoRACompatibleLinear', | |
'QLinear', | |
# 'GroupNorm', | |
] | |
CONV_MODULES = [ | |
'Conv2d', | |
'LoRACompatibleConv', | |
'QConv2d', | |
] | |
class LoRAModule(ToolkitModuleMixin, ExtractableModuleMixin, torch.nn.Module): | |
""" | |
replaces forward method of the original Linear, instead of replacing the original Linear module. | |
""" | |
def __init__( | |
self, | |
lora_name, | |
org_module: torch.nn.Module, | |
multiplier=1.0, | |
lora_dim=4, | |
alpha=1, | |
dropout=None, | |
rank_dropout=None, | |
module_dropout=None, | |
network: 'LoRASpecialNetwork' = None, | |
use_bias: bool = False, | |
**kwargs | |
): | |
self.can_merge_in = True | |
"""if alpha == 0 or None, alpha is rank (no scaling).""" | |
ToolkitModuleMixin.__init__(self, network=network) | |
torch.nn.Module.__init__(self) | |
self.lora_name = lora_name | |
self.orig_module_ref = weakref.ref(org_module) | |
self.scalar = torch.tensor(1.0, device=org_module.weight.device) | |
# check if parent has bias. if not force use_bias to False | |
if org_module.bias is None: | |
use_bias = False | |
if org_module.__class__.__name__ in CONV_MODULES: | |
in_dim = org_module.in_channels | |
out_dim = org_module.out_channels | |
else: | |
in_dim = org_module.in_features | |
out_dim = org_module.out_features | |
# if limit_rank: | |
# self.lora_dim = min(lora_dim, in_dim, out_dim) | |
# if self.lora_dim != lora_dim: | |
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}") | |
# else: | |
self.lora_dim = lora_dim | |
if org_module.__class__.__name__ in CONV_MODULES: | |
kernel_size = org_module.kernel_size | |
stride = org_module.stride | |
padding = org_module.padding | |
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) | |
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=use_bias) | |
else: | |
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False) | |
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=use_bias) | |
if type(alpha) == torch.Tensor: | |
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error | |
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha | |
self.scale = alpha / self.lora_dim | |
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える | |
# same as microsoft's | |
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) | |
torch.nn.init.zeros_(self.lora_up.weight) | |
self.multiplier: Union[float, List[float]] = multiplier | |
# wrap the original module so it doesn't get weights updated | |
self.org_module = [org_module] | |
self.dropout = dropout | |
self.rank_dropout = rank_dropout | |
self.module_dropout = module_dropout | |
self.is_checkpointing = False | |
def apply_to(self): | |
self.org_forward = self.org_module[0].forward | |
self.org_module[0].forward = self.forward | |
# del self.org_module | |
class LoRASpecialNetwork(ToolkitNetworkMixin, LoRANetwork): | |
NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数 | |
# UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] | |
# UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "ResnetBlock2D"] | |
UNET_TARGET_REPLACE_MODULE = ["UNet2DConditionModel"] | |
# UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] | |
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["UNet2DConditionModel"] | |
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] | |
LORA_PREFIX_UNET = "lora_unet" | |
PEFT_PREFIX_UNET = "unet" | |
LORA_PREFIX_TEXT_ENCODER = "lora_te" | |
# SDXL: must starts with LORA_PREFIX_TEXT_ENCODER | |
LORA_PREFIX_TEXT_ENCODER1 = "lora_te1" | |
LORA_PREFIX_TEXT_ENCODER2 = "lora_te2" | |
def __init__( | |
self, | |
text_encoder: Union[List[CLIPTextModel], CLIPTextModel], | |
unet, | |
multiplier: float = 1.0, | |
lora_dim: int = 4, | |
alpha: float = 1, | |
dropout: Optional[float] = None, | |
rank_dropout: Optional[float] = None, | |
module_dropout: Optional[float] = None, | |
conv_lora_dim: Optional[int] = None, | |
conv_alpha: Optional[float] = None, | |
block_dims: Optional[List[int]] = None, | |
block_alphas: Optional[List[float]] = None, | |
conv_block_dims: Optional[List[int]] = None, | |
conv_block_alphas: Optional[List[float]] = None, | |
modules_dim: Optional[Dict[str, int]] = None, | |
modules_alpha: Optional[Dict[str, int]] = None, | |
module_class: Type[object] = LoRAModule, | |
varbose: Optional[bool] = False, | |
train_text_encoder: Optional[bool] = True, | |
use_text_encoder_1: bool = True, | |
use_text_encoder_2: bool = True, | |
train_unet: Optional[bool] = True, | |
is_sdxl=False, | |
is_v2=False, | |
is_v3=False, | |
is_pixart: bool = False, | |
is_auraflow: bool = False, | |
is_flux: bool = False, | |
is_lumina2: bool = False, | |
use_bias: bool = False, | |
is_lorm: bool = False, | |
ignore_if_contains = None, | |
only_if_contains = None, | |
parameter_threshold: float = 0.0, | |
attn_only: bool = False, | |
target_lin_modules=LoRANetwork.UNET_TARGET_REPLACE_MODULE, | |
target_conv_modules=LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3, | |
network_type: str = "lora", | |
full_train_in_out: bool = False, | |
transformer_only: bool = False, | |
peft_format: bool = False, | |
is_assistant_adapter: bool = False, | |
is_transformer: bool = False, | |
base_model: 'StableDiffusion' = None, | |
**kwargs | |
) -> None: | |
""" | |
LoRA network: すごく引数が多いが、パターンは以下の通り | |
1. lora_dimとalphaを指定 | |
2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定 | |
3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない | |
4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する | |
5. modules_dimとmodules_alphaを指定 (推論用) | |
""" | |
# call the parent of the parent we are replacing (LoRANetwork) init | |
torch.nn.Module.__init__(self) | |
ToolkitNetworkMixin.__init__( | |
self, | |
train_text_encoder=train_text_encoder, | |
train_unet=train_unet, | |
is_sdxl=is_sdxl, | |
is_v2=is_v2, | |
is_lorm=is_lorm, | |
**kwargs | |
) | |
if ignore_if_contains is None: | |
ignore_if_contains = [] | |
self.ignore_if_contains = ignore_if_contains | |
self.transformer_only = transformer_only | |
self.base_model_ref = None | |
if base_model is not None: | |
self.base_model_ref = weakref.ref(base_model) | |
self.only_if_contains: Union[List, None] = only_if_contains | |
self.lora_dim = lora_dim | |
self.alpha = alpha | |
self.conv_lora_dim = conv_lora_dim | |
self.conv_alpha = conv_alpha | |
self.dropout = dropout | |
self.rank_dropout = rank_dropout | |
self.module_dropout = module_dropout | |
self.is_checkpointing = False | |
self._multiplier: float = 1.0 | |
self.is_active: bool = False | |
self.torch_multiplier = None | |
# triggers the state updates | |
self.multiplier = multiplier | |
self.is_sdxl = is_sdxl | |
self.is_v2 = is_v2 | |
self.is_v3 = is_v3 | |
self.is_pixart = is_pixart | |
self.is_auraflow = is_auraflow | |
self.is_flux = is_flux | |
self.is_lumina2 = is_lumina2 | |
self.network_type = network_type | |
self.is_assistant_adapter = is_assistant_adapter | |
if self.network_type.lower() == "dora": | |
self.module_class = DoRAModule | |
module_class = DoRAModule | |
elif self.network_type.lower() == "lokr": | |
self.module_class = LokrModule | |
module_class = LokrModule | |
self.network_config: NetworkConfig = kwargs.get("network_config", None) | |
self.peft_format = peft_format | |
self.is_transformer = is_transformer | |
# always do peft for flux only for now | |
if self.is_flux or self.is_v3 or self.is_lumina2 or is_transformer: | |
# don't do peft format for lokr | |
if self.network_type.lower() != "lokr": | |
self.peft_format = True | |
if self.peft_format: | |
# no alpha for peft | |
self.alpha = self.lora_dim | |
alpha = self.alpha | |
self.conv_alpha = self.conv_lora_dim | |
conv_alpha = self.conv_alpha | |
self.full_train_in_out = full_train_in_out | |
if modules_dim is not None: | |
print(f"create LoRA network from weights") | |
elif block_dims is not None: | |
print(f"create LoRA network from block_dims") | |
print( | |
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}") | |
print(f"block_dims: {block_dims}") | |
print(f"block_alphas: {block_alphas}") | |
if conv_block_dims is not None: | |
print(f"conv_block_dims: {conv_block_dims}") | |
print(f"conv_block_alphas: {conv_block_alphas}") | |
else: | |
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") | |
print( | |
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}") | |
if self.conv_lora_dim is not None: | |
print( | |
f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}") | |
# create module instances | |
def create_modules( | |
is_unet: bool, | |
text_encoder_idx: Optional[int], # None, 1, 2 | |
root_module: torch.nn.Module, | |
target_replace_modules: List[torch.nn.Module], | |
) -> List[LoRAModule]: | |
unet_prefix = self.LORA_PREFIX_UNET | |
if self.peft_format: | |
unet_prefix = self.PEFT_PREFIX_UNET | |
if is_pixart or is_v3 or is_auraflow or is_flux or is_lumina2 or self.is_transformer: | |
unet_prefix = f"lora_transformer" | |
if self.peft_format: | |
unet_prefix = "transformer" | |
prefix = ( | |
unet_prefix | |
if is_unet | |
else ( | |
self.LORA_PREFIX_TEXT_ENCODER | |
if text_encoder_idx is None | |
else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2) | |
) | |
) | |
loras = [] | |
skipped = [] | |
attached_modules = [] | |
lora_shape_dict = {} | |
for name, module in root_module.named_modules(): | |
if module.__class__.__name__ in target_replace_modules: | |
for child_name, child_module in module.named_modules(): | |
is_linear = child_module.__class__.__name__ in LINEAR_MODULES | |
is_conv2d = child_module.__class__.__name__ in CONV_MODULES | |
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) | |
lora_name = [prefix, name, child_name] | |
# filter out blank | |
lora_name = [x for x in lora_name if x and x != ""] | |
lora_name = ".".join(lora_name) | |
# if it doesnt have a name, it wil have two dots | |
lora_name.replace("..", ".") | |
clean_name = lora_name | |
if self.peft_format: | |
# we replace this on saving | |
lora_name = lora_name.replace(".", "$$") | |
else: | |
lora_name = lora_name.replace(".", "_") | |
skip = False | |
if any([word in clean_name for word in self.ignore_if_contains]): | |
skip = True | |
# see if it is over threshold | |
if count_parameters(child_module) < parameter_threshold: | |
skip = True | |
if self.transformer_only and is_unet: | |
transformer_block_names = None | |
if base_model is not None: | |
transformer_block_names = base_model.get_transformer_block_names() | |
if transformer_block_names is not None: | |
if not any([name in lora_name for name in transformer_block_names]): | |
skip = True | |
else: | |
if self.is_pixart: | |
if "transformer_blocks" not in lora_name: | |
skip = True | |
if self.is_flux: | |
if "transformer_blocks" not in lora_name: | |
skip = True | |
if self.is_lumina2: | |
if "layers$$" not in lora_name and "noise_refiner$$" not in lora_name and "context_refiner$$" not in lora_name: | |
skip = True | |
if self.is_v3: | |
if "transformer_blocks" not in lora_name: | |
skip = True | |
# handle custom models | |
if hasattr(root_module, 'transformer_blocks'): | |
if "transformer_blocks" not in lora_name: | |
skip = True | |
if hasattr(root_module, 'blocks'): | |
if "blocks" not in lora_name: | |
skip = True | |
if hasattr(root_module, 'single_blocks'): | |
if "single_blocks" not in lora_name and "double_blocks" not in lora_name: | |
skip = True | |
if (is_linear or is_conv2d) and not skip: | |
if self.only_if_contains is not None: | |
if not any([word in clean_name for word in self.only_if_contains]) and not any([word in lora_name for word in self.only_if_contains]): | |
continue | |
dim = None | |
alpha = None | |
if modules_dim is not None: | |
# モジュール指定あり | |
if lora_name in modules_dim: | |
dim = modules_dim[lora_name] | |
alpha = modules_alpha[lora_name] | |
else: | |
# 通常、すべて対象とする | |
if is_linear or is_conv2d_1x1: | |
dim = self.lora_dim | |
alpha = self.alpha | |
elif self.conv_lora_dim is not None: | |
dim = self.conv_lora_dim | |
alpha = self.conv_alpha | |
if dim is None or dim == 0: | |
# skipした情報を出力 | |
if is_linear or is_conv2d_1x1 or ( | |
self.conv_lora_dim is not None or conv_block_dims is not None): | |
skipped.append(lora_name) | |
continue | |
module_kwargs = {} | |
if self.network_type.lower() == "lokr": | |
module_kwargs["factor"] = self.network_config.lokr_factor | |
lora = module_class( | |
lora_name, | |
child_module, | |
self.multiplier, | |
dim, | |
alpha, | |
dropout=dropout, | |
rank_dropout=rank_dropout, | |
module_dropout=module_dropout, | |
network=self, | |
parent=module, | |
use_bias=use_bias, | |
**module_kwargs | |
) | |
loras.append(lora) | |
if self.network_type.lower() == "lokr": | |
try: | |
lora_shape_dict[lora_name] = [list(lora.lokr_w1.weight.shape), list(lora.lokr_w2.weight.shape)] | |
except: | |
pass | |
else: | |
lora_shape_dict[lora_name] = [list(lora.lora_down.weight.shape), list(lora.lora_up.weight.shape)] | |
return loras, skipped | |
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder] | |
# create LoRA for text encoder | |
# 毎回すべてのモジュールを作るのは無駄なので要検討 | |
self.text_encoder_loras = [] | |
skipped_te = [] | |
if train_text_encoder: | |
for i, text_encoder in enumerate(text_encoders): | |
if not use_text_encoder_1 and i == 0: | |
continue | |
if not use_text_encoder_2 and i == 1: | |
continue | |
if len(text_encoders) > 1: | |
index = i + 1 | |
print(f"create LoRA for Text Encoder {index}:") | |
else: | |
index = None | |
print(f"create LoRA for Text Encoder:") | |
replace_modules = LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE | |
if self.is_pixart: | |
replace_modules = ["T5EncoderModel"] | |
text_encoder_loras, skipped = create_modules(False, index, text_encoder, replace_modules) | |
self.text_encoder_loras.extend(text_encoder_loras) | |
skipped_te += skipped | |
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.") | |
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights | |
target_modules = target_lin_modules | |
if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None: | |
target_modules += target_conv_modules | |
if is_v3: | |
target_modules = ["SD3Transformer2DModel"] | |
if is_pixart: | |
target_modules = ["PixArtTransformer2DModel"] | |
if is_auraflow: | |
target_modules = ["AuraFlowTransformer2DModel"] | |
if is_flux: | |
target_modules = ["FluxTransformer2DModel"] | |
if is_lumina2: | |
target_modules = ["Lumina2Transformer2DModel"] | |
if train_unet: | |
self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules) | |
else: | |
self.unet_loras = [] | |
skipped_un = [] | |
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.") | |
skipped = skipped_te + skipped_un | |
if varbose and len(skipped) > 0: | |
print( | |
f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:" | |
) | |
for name in skipped: | |
print(f"\t{name}") | |
self.up_lr_weight: List[float] = None | |
self.down_lr_weight: List[float] = None | |
self.mid_lr_weight: float = None | |
self.block_lr = False | |
# assertion | |
names = set() | |
for lora in self.text_encoder_loras + self.unet_loras: | |
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" | |
names.add(lora.lora_name) | |
if self.full_train_in_out: | |
print("full train in out") | |
# we are going to retrain the main in out layers for VAE change usually | |
if self.is_pixart: | |
transformer: PixArtTransformer2DModel = unet | |
self.transformer_pos_embed = copy.deepcopy(transformer.pos_embed) | |
self.transformer_proj_out = copy.deepcopy(transformer.proj_out) | |
transformer.pos_embed = self.transformer_pos_embed | |
transformer.proj_out = self.transformer_proj_out | |
elif self.is_auraflow: | |
transformer: AuraFlowTransformer2DModel = unet | |
self.transformer_pos_embed = copy.deepcopy(transformer.pos_embed) | |
self.transformer_proj_out = copy.deepcopy(transformer.proj_out) | |
transformer.pos_embed = self.transformer_pos_embed | |
transformer.proj_out = self.transformer_proj_out | |
else: | |
unet: UNet2DConditionModel = unet | |
unet_conv_in: torch.nn.Conv2d = unet.conv_in | |
unet_conv_out: torch.nn.Conv2d = unet.conv_out | |
# clone these and replace their forwards with ours | |
self.unet_conv_in = copy.deepcopy(unet_conv_in) | |
self.unet_conv_out = copy.deepcopy(unet_conv_out) | |
unet.conv_in = self.unet_conv_in | |
unet.conv_out = self.unet_conv_out | |
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr): | |
# call Lora prepare_optimizer_params | |
all_params = super().prepare_optimizer_params(text_encoder_lr, unet_lr, default_lr) | |
if self.full_train_in_out: | |
if self.is_pixart or self.is_auraflow or self.is_flux: | |
all_params.append({"lr": unet_lr, "params": list(self.transformer_pos_embed.parameters())}) | |
all_params.append({"lr": unet_lr, "params": list(self.transformer_proj_out.parameters())}) | |
else: | |
all_params.append({"lr": unet_lr, "params": list(self.unet_conv_in.parameters())}) | |
all_params.append({"lr": unet_lr, "params": list(self.unet_conv_out.parameters())}) | |
return all_params | |