Spaces:
Paused
Paused
import base64 | |
import glob | |
import hashlib | |
import json | |
import math | |
import os | |
import random | |
from collections import OrderedDict | |
from typing import TYPE_CHECKING, List, Dict, Union | |
import traceback | |
import cv2 | |
import numpy as np | |
import torch | |
from safetensors.torch import load_file, save_file | |
from tqdm import tqdm | |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, SiglipImageProcessor | |
from toolkit.basic import flush, value_map | |
from toolkit.buckets import get_bucket_for_image_size, get_resolution | |
from toolkit.config_modules import ControlTypes | |
from toolkit.metadata import get_meta_for_safetensors | |
from toolkit.models.pixtral_vision import PixtralVisionImagePreprocessorCompatible | |
from toolkit.prompt_utils import inject_trigger_into_prompt | |
from torchvision import transforms | |
from PIL import Image, ImageFilter, ImageOps | |
from PIL.ImageOps import exif_transpose | |
import albumentations as A | |
from toolkit.print import print_acc | |
from toolkit.accelerator import get_accelerator | |
from toolkit.train_tools import get_torch_dtype | |
if TYPE_CHECKING: | |
from toolkit.data_loader import AiToolkitDataset | |
from toolkit.data_transfer_object.data_loader import FileItemDTO | |
from toolkit.stable_diffusion_model import StableDiffusion | |
accelerator = get_accelerator() | |
# def get_associated_caption_from_img_path(img_path): | |
# https://demo.albumentations.ai/ | |
class Augments: | |
def __init__(self, **kwargs): | |
self.method_name = kwargs.get('method', None) | |
self.params = kwargs.get('params', {}) | |
# convert kwargs enums for cv2 | |
for key, value in self.params.items(): | |
if isinstance(value, str): | |
# split the string | |
split_string = value.split('.') | |
if len(split_string) == 2 and split_string[0] == 'cv2': | |
if hasattr(cv2, split_string[1]): | |
self.params[key] = getattr(cv2, split_string[1].upper()) | |
else: | |
raise ValueError(f"invalid cv2 enum: {split_string[1]}") | |
transforms_dict = { | |
'ColorJitter': transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.03), | |
'RandomEqualize': transforms.RandomEqualize(p=0.2), | |
} | |
img_ext_list = ['.jpg', '.jpeg', '.png', '.webp'] | |
def standardize_images(images): | |
""" | |
Standardize the given batch of images using the specified mean and std. | |
Expects values of 0 - 1 | |
Args: | |
images (torch.Tensor): A batch of images in the shape of (N, C, H, W), | |
where N is the number of images, C is the number of channels, | |
H is the height, and W is the width. | |
Returns: | |
torch.Tensor: Standardized images. | |
""" | |
mean = [0.48145466, 0.4578275, 0.40821073] | |
std = [0.26862954, 0.26130258, 0.27577711] | |
# Define the normalization transform | |
normalize = transforms.Normalize(mean=mean, std=std) | |
# Apply normalization to each image in the batch | |
standardized_images = torch.stack([normalize(img) for img in images]) | |
return standardized_images | |
def clean_caption(caption): | |
# this doesnt make any sense anymore in a world that is not based on comma seperated tokens | |
# # remove any newlines | |
# caption = caption.replace('\n', ', ') | |
# # remove new lines for all operating systems | |
# caption = caption.replace('\r', ', ') | |
# caption_split = caption.split(',') | |
# # remove empty strings | |
# caption_split = [p.strip() for p in caption_split if p.strip()] | |
# # join back together | |
# caption = ', '.join(caption_split) | |
return caption | |
class CaptionMixin: | |
def get_caption_item(self: 'AiToolkitDataset', index): | |
if not hasattr(self, 'caption_type'): | |
raise Exception('caption_type not found on class instance') | |
if not hasattr(self, 'file_list'): | |
raise Exception('file_list not found on class instance') | |
img_path_or_tuple = self.file_list[index] | |
if isinstance(img_path_or_tuple, tuple): | |
img_path = img_path_or_tuple[0] if isinstance(img_path_or_tuple[0], str) else img_path_or_tuple[0].path | |
# check if either has a prompt file | |
path_no_ext = os.path.splitext(img_path)[0] | |
prompt_path = None | |
ext = self.dataset_config.caption_ext | |
prompt_path = path_no_ext + ext | |
else: | |
img_path = img_path_or_tuple if isinstance(img_path_or_tuple, str) else img_path_or_tuple.path | |
# see if prompt file exists | |
path_no_ext = os.path.splitext(img_path)[0] | |
prompt_path = path_no_ext + ext | |
# allow folders to have a default prompt | |
default_prompt_path = os.path.join(os.path.dirname(img_path), 'default.txt') | |
default_prompt_path_with_ext = os.path.join(os.path.dirname(img_path), 'default' + ext) | |
if os.path.exists(prompt_path): | |
with open(prompt_path, 'r', encoding='utf-8') as f: | |
prompt = f.read() | |
# check if is json | |
if prompt_path.endswith('.json'): | |
prompt = json.loads(prompt) | |
if 'caption' in prompt: | |
prompt = prompt['caption'] | |
prompt = clean_caption(prompt) | |
elif os.path.exists(default_prompt_path_with_ext): | |
with open(default_prompt_path, 'r', encoding='utf-8') as f: | |
prompt = f.read() | |
prompt = clean_caption(prompt) | |
elif os.path.exists(default_prompt_path): | |
with open(default_prompt_path, 'r', encoding='utf-8') as f: | |
prompt = f.read() | |
prompt = clean_caption(prompt) | |
else: | |
prompt = '' | |
# get default_prompt if it exists on the class instance | |
if hasattr(self, 'default_prompt'): | |
prompt = self.default_prompt | |
if hasattr(self, 'default_caption'): | |
prompt = self.default_caption | |
# handle replacements | |
replacement_list = self.dataset_config.replacements if isinstance(self.dataset_config.replacements, list) else [] | |
for replacement in replacement_list: | |
from_string, to_string = replacement.split('|') | |
prompt = prompt.replace(from_string, to_string) | |
return prompt | |
if TYPE_CHECKING: | |
from toolkit.config_modules import DatasetConfig | |
from toolkit.data_transfer_object.data_loader import FileItemDTO | |
class Bucket: | |
def __init__(self, width: int, height: int): | |
self.width = width | |
self.height = height | |
self.file_list_idx: List[int] = [] | |
class BucketsMixin: | |
def __init__(self): | |
self.buckets: Dict[str, Bucket] = {} | |
self.batch_indices: List[List[int]] = [] | |
def build_batch_indices(self: 'AiToolkitDataset'): | |
self.batch_indices = [] | |
for key, bucket in self.buckets.items(): | |
for start_idx in range(0, len(bucket.file_list_idx), self.batch_size): | |
end_idx = min(start_idx + self.batch_size, len(bucket.file_list_idx)) | |
batch = bucket.file_list_idx[start_idx:end_idx] | |
self.batch_indices.append(batch) | |
def shuffle_buckets(self: 'AiToolkitDataset'): | |
for key, bucket in self.buckets.items(): | |
random.shuffle(bucket.file_list_idx) | |
def setup_buckets(self: 'AiToolkitDataset', quiet=False): | |
if not hasattr(self, 'file_list'): | |
raise Exception(f'file_list not found on class instance {self.__class__.__name__}') | |
if not hasattr(self, 'dataset_config'): | |
raise Exception(f'dataset_config not found on class instance {self.__class__.__name__}') | |
if self.epoch_num > 0 and self.dataset_config.poi is None: | |
# no need to rebuild buckets for now | |
# todo handle random cropping for buckets | |
return | |
self.buckets = {} # clear it | |
config: 'DatasetConfig' = self.dataset_config | |
resolution = config.resolution | |
bucket_tolerance = config.bucket_tolerance | |
file_list: List['FileItemDTO'] = self.file_list | |
# for file_item in enumerate(file_list): | |
for idx, file_item in enumerate(file_list): | |
file_item: 'FileItemDTO' = file_item | |
width = int(file_item.width * file_item.dataset_config.scale) | |
height = int(file_item.height * file_item.dataset_config.scale) | |
did_process_poi = False | |
if file_item.has_point_of_interest: | |
# Attempt to process the poi if we can. It wont process if the image is smaller than the resolution | |
did_process_poi = file_item.setup_poi_bucket() | |
if self.dataset_config.square_crop: | |
# we scale first so smallest size matches resolution | |
scale_factor_x = resolution / width | |
scale_factor_y = resolution / height | |
scale_factor = max(scale_factor_x, scale_factor_y) | |
file_item.scale_to_width = math.ceil(width * scale_factor) | |
file_item.scale_to_height = math.ceil(height * scale_factor) | |
file_item.crop_width = resolution | |
file_item.crop_height = resolution | |
if width > height: | |
file_item.crop_x = int(file_item.scale_to_width / 2 - resolution / 2) | |
file_item.crop_y = 0 | |
else: | |
file_item.crop_x = 0 | |
file_item.crop_y = int(file_item.scale_to_height / 2 - resolution / 2) | |
elif not did_process_poi: | |
bucket_resolution = get_bucket_for_image_size( | |
width, height, | |
resolution=resolution, | |
divisibility=bucket_tolerance | |
) | |
# Calculate scale factors for width and height | |
width_scale_factor = bucket_resolution["width"] / width | |
height_scale_factor = bucket_resolution["height"] / height | |
# Use the maximum of the scale factors to ensure both dimensions are scaled above the bucket resolution | |
max_scale_factor = max(width_scale_factor, height_scale_factor) | |
# round up | |
file_item.scale_to_width = int(math.ceil(width * max_scale_factor)) | |
file_item.scale_to_height = int(math.ceil(height * max_scale_factor)) | |
file_item.crop_height = bucket_resolution["height"] | |
file_item.crop_width = bucket_resolution["width"] | |
new_width = bucket_resolution["width"] | |
new_height = bucket_resolution["height"] | |
if self.dataset_config.random_crop: | |
# random crop | |
crop_x = random.randint(0, file_item.scale_to_width - new_width) | |
crop_y = random.randint(0, file_item.scale_to_height - new_height) | |
file_item.crop_x = crop_x | |
file_item.crop_y = crop_y | |
else: | |
# do central crop | |
file_item.crop_x = int((file_item.scale_to_width - new_width) / 2) | |
file_item.crop_y = int((file_item.scale_to_height - new_height) / 2) | |
if file_item.crop_y < 0 or file_item.crop_x < 0: | |
print_acc('debug') | |
# check if bucket exists, if not, create it | |
bucket_key = f'{file_item.crop_width}x{file_item.crop_height}' | |
if bucket_key not in self.buckets: | |
self.buckets[bucket_key] = Bucket(file_item.crop_width, file_item.crop_height) | |
self.buckets[bucket_key].file_list_idx.append(idx) | |
# print the buckets | |
self.shuffle_buckets() | |
self.build_batch_indices() | |
if not quiet: | |
print_acc(f'Bucket sizes for {self.dataset_path}:') | |
for key, bucket in self.buckets.items(): | |
print_acc(f'{key}: {len(bucket.file_list_idx)} files') | |
print_acc(f'{len(self.buckets)} buckets made') | |
class CaptionProcessingDTOMixin: | |
def __init__(self: 'FileItemDTO', *args, **kwargs): | |
if hasattr(super(), '__init__'): | |
super().__init__(*args, **kwargs) | |
self.raw_caption: str = None | |
self.raw_caption_short: str = None | |
self.caption: str = None | |
self.caption_short: str = None | |
dataset_config: DatasetConfig = kwargs.get('dataset_config', None) | |
self.extra_values: List[float] = dataset_config.extra_values | |
# todo allow for loading from sd-scripts style dict | |
def load_caption(self: 'FileItemDTO', caption_dict: Union[dict, None]): | |
if self.raw_caption is not None: | |
# we already loaded it | |
pass | |
elif caption_dict is not None and self.path in caption_dict and "caption" in caption_dict[self.path]: | |
self.raw_caption = caption_dict[self.path]["caption"] | |
if 'caption_short' in caption_dict[self.path]: | |
self.raw_caption_short = caption_dict[self.path]["caption_short"] | |
if self.dataset_config.use_short_captions: | |
self.raw_caption = caption_dict[self.path]["caption_short"] | |
else: | |
# see if prompt file exists | |
path_no_ext = os.path.splitext(self.path)[0] | |
prompt_ext = self.dataset_config.caption_ext | |
prompt_path = f"{path_no_ext}.{prompt_ext}" | |
short_caption = None | |
if os.path.exists(prompt_path): | |
with open(prompt_path, 'r', encoding='utf-8') as f: | |
prompt = f.read() | |
short_caption = None | |
if prompt_path.endswith('.json'): | |
# replace any line endings with commas for \n \r \r\n | |
prompt = prompt.replace('\r\n', ' ') | |
prompt = prompt.replace('\n', ' ') | |
prompt = prompt.replace('\r', ' ') | |
prompt_json = json.loads(prompt) | |
if 'caption' in prompt_json: | |
prompt = prompt_json['caption'] | |
if 'caption_short' in prompt_json: | |
short_caption = prompt_json['caption_short'] | |
if self.dataset_config.use_short_captions: | |
prompt = short_caption | |
if 'extra_values' in prompt_json: | |
self.extra_values = prompt_json['extra_values'] | |
prompt = clean_caption(prompt) | |
if short_caption is not None: | |
short_caption = clean_caption(short_caption) | |
else: | |
prompt = '' | |
if self.dataset_config.default_caption is not None: | |
prompt = self.dataset_config.default_caption | |
if short_caption is None: | |
short_caption = self.dataset_config.default_caption | |
self.raw_caption = prompt | |
self.raw_caption_short = short_caption | |
self.caption = self.get_caption() | |
if self.raw_caption_short is not None: | |
self.caption_short = self.get_caption(short_caption=True) | |
def get_caption( | |
self: 'FileItemDTO', | |
trigger=None, | |
to_replace_list=None, | |
add_if_not_present=False, | |
short_caption=False | |
): | |
if short_caption: | |
raw_caption = self.raw_caption_short | |
else: | |
raw_caption = self.raw_caption | |
if raw_caption is None: | |
raw_caption = '' | |
# handle dropout | |
if self.dataset_config.caption_dropout_rate > 0 and not short_caption: | |
# get a random float form 0 to 1 | |
rand = random.random() | |
if rand < self.dataset_config.caption_dropout_rate: | |
# drop the caption | |
return '' | |
# get tokens | |
token_list = raw_caption.split(',') | |
# trim whitespace | |
token_list = [x.strip() for x in token_list] | |
# remove empty strings | |
token_list = [x for x in token_list if x] | |
# handle token dropout | |
if self.dataset_config.token_dropout_rate > 0 and not short_caption: | |
new_token_list = [] | |
keep_tokens: int = self.dataset_config.keep_tokens | |
for idx, token in enumerate(token_list): | |
if idx < keep_tokens: | |
new_token_list.append(token) | |
elif self.dataset_config.token_dropout_rate >= 1.0: | |
# drop the token | |
pass | |
else: | |
# get a random float form 0 to 1 | |
rand = random.random() | |
if rand > self.dataset_config.token_dropout_rate: | |
# keep the token | |
new_token_list.append(token) | |
token_list = new_token_list | |
if self.dataset_config.shuffle_tokens: | |
random.shuffle(token_list) | |
# join back together | |
caption = ', '.join(token_list) | |
# caption = inject_trigger_into_prompt(caption, trigger, to_replace_list, add_if_not_present) | |
if self.dataset_config.random_triggers: | |
num_triggers = self.dataset_config.random_triggers_max | |
if num_triggers > 1: | |
num_triggers = random.randint(0, num_triggers) | |
if num_triggers > 0: | |
triggers = random.sample(self.dataset_config.random_triggers, num_triggers) | |
caption = caption + ', ' + ', '.join(triggers) | |
# add random triggers | |
# for i in range(num_triggers): | |
# # fastest method | |
# trigger = self.dataset_config.random_triggers[int(random.random() * (len(self.dataset_config.random_triggers)))] | |
# caption = caption + ', ' + trigger | |
if self.dataset_config.shuffle_tokens: | |
# shuffle again | |
token_list = caption.split(',') | |
# trim whitespace | |
token_list = [x.strip() for x in token_list] | |
# remove empty strings | |
token_list = [x for x in token_list if x] | |
random.shuffle(token_list) | |
caption = ', '.join(token_list) | |
return caption | |
class ImageProcessingDTOMixin: | |
def load_and_process_video( | |
self: 'FileItemDTO', | |
transform: Union[None, transforms.Compose], | |
only_load_latents=False | |
): | |
if self.is_latent_cached: | |
raise Exception('Latent caching not supported for videos') | |
if self.augments is not None and len(self.augments) > 0: | |
raise Exception('Augments not supported for videos') | |
if self.has_augmentations: | |
raise Exception('Augmentations not supported for videos') | |
if not self.dataset_config.buckets: | |
raise Exception('Buckets required for video processing') | |
try: | |
# Use OpenCV to capture video frames | |
cap = cv2.VideoCapture(self.path) | |
if not cap.isOpened(): | |
raise Exception(f"Failed to open video file: {self.path}") | |
# Get video properties | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
video_fps = cap.get(cv2.CAP_PROP_FPS) | |
# Calculate the max valid frame index (accounting for zero-indexing) | |
max_frame_index = total_frames - 1 | |
# Only log video properties if in debug mode | |
if hasattr(self.dataset_config, 'debug') and self.dataset_config.debug: | |
print_acc(f"Video properties: {self.path}") | |
print_acc(f" Total frames: {total_frames}") | |
print_acc(f" Max valid frame index: {max_frame_index}") | |
print_acc(f" FPS: {video_fps}") | |
frames_to_extract = [] | |
# Always stretch/shrink to the requested number of frames if needed | |
if self.dataset_config.shrink_video_to_frames or total_frames < self.dataset_config.num_frames: | |
# Distribute frames evenly across the entire video | |
interval = max_frame_index / (self.dataset_config.num_frames - 1) if self.dataset_config.num_frames > 1 else 0 | |
frames_to_extract = [min(int(round(i * interval)), max_frame_index) for i in range(self.dataset_config.num_frames)] | |
else: | |
# Calculate frame interval based on FPS ratio | |
fps_ratio = video_fps / self.dataset_config.fps | |
frame_interval = max(1, int(round(fps_ratio))) | |
# Calculate max consecutive frames we can extract at desired FPS | |
max_consecutive_frames = (total_frames // frame_interval) | |
if max_consecutive_frames < self.dataset_config.num_frames: | |
# Not enough frames at desired FPS, so stretch instead | |
interval = max_frame_index / (self.dataset_config.num_frames - 1) if self.dataset_config.num_frames > 1 else 0 | |
frames_to_extract = [min(int(round(i * interval)), max_frame_index) for i in range(self.dataset_config.num_frames)] | |
else: | |
# Calculate max start frame to ensure we can get all num_frames | |
max_start_frame = max_frame_index - ((self.dataset_config.num_frames - 1) * frame_interval) | |
start_frame = random.randint(0, max(0, max_start_frame)) | |
# Generate list of frames to extract | |
frames_to_extract = [start_frame + (i * frame_interval) for i in range(self.dataset_config.num_frames)] | |
# Final safety check - ensure no frame exceeds max valid index | |
frames_to_extract = [min(frame_idx, max_frame_index) for frame_idx in frames_to_extract] | |
# Only log frames to extract if in debug mode | |
if hasattr(self.dataset_config, 'debug') and self.dataset_config.debug: | |
print_acc(f" Frames to extract: {frames_to_extract}") | |
# Extract frames | |
frames = [] | |
for frame_idx in frames_to_extract: | |
# Safety check - ensure frame_idx is within bounds (silently fix) | |
if frame_idx > max_frame_index: | |
frame_idx = max_frame_index | |
# Set frame position | |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx) | |
# Silently verify position was set correctly (no warnings unless debug mode) | |
if hasattr(self.dataset_config, 'debug') and self.dataset_config.debug: | |
actual_pos = int(cap.get(cv2.CAP_PROP_POS_FRAMES)) | |
if actual_pos != frame_idx: | |
print_acc(f"Warning: Failed to set exact frame position. Requested: {frame_idx}, Actual: {actual_pos}") | |
ret, frame = cap.read() | |
if not ret: | |
# Try to provide more detailed error information | |
actual_frame = int(cap.get(cv2.CAP_PROP_POS_FRAMES)) | |
frame_pos_info = f"Requested frame: {frame_idx}, Actual frame position: {actual_frame}" | |
# Try to read the next available frame as a fallback | |
fallback_success = False | |
for fallback_offset in [1, -1, 5, -5, 10, -10]: | |
fallback_pos = max(0, min(frame_idx + fallback_offset, max_frame_index)) | |
cap.set(cv2.CAP_PROP_POS_FRAMES, fallback_pos) | |
fallback_ret, fallback_frame = cap.read() | |
if fallback_ret: | |
# Only log in debug mode | |
if hasattr(self.dataset_config, 'debug') and self.dataset_config.debug: | |
print_acc(f"Falling back to nearby frame {fallback_pos} instead of {frame_idx}") | |
frame = fallback_frame | |
fallback_success = True | |
break | |
else: | |
# No fallback worked, raise a more detailed exception | |
video_info = f"Video: {self.path}, Total frames: {total_frames}, FPS: {video_fps}" | |
raise Exception(f"Failed to read frame {frame_idx} from video. {frame_pos_info}. {video_info}") | |
# Convert BGR to RGB | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# Convert to PIL Image | |
img = Image.fromarray(frame) | |
# Apply the same processing as for single images | |
img = img.convert('RGB') | |
if self.flip_x: | |
img = img.transpose(Image.FLIP_LEFT_RIGHT) | |
if self.flip_y: | |
img = img.transpose(Image.FLIP_TOP_BOTTOM) | |
# Apply bucketing | |
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC) | |
img = img.crop(( | |
self.crop_x, | |
self.crop_y, | |
self.crop_x + self.crop_width, | |
self.crop_y + self.crop_height | |
)) | |
# Apply transform if provided | |
if transform: | |
img = transform(img) | |
frames.append(img) | |
# Release the video capture | |
cap.release() | |
# Stack frames into tensor [frames, channels, height, width] | |
self.tensor = torch.stack(frames) | |
# Only log success in debug mode | |
if hasattr(self.dataset_config, 'debug') and self.dataset_config.debug: | |
print_acc(f"Successfully loaded video with {len(frames)} frames: {self.path}") | |
except Exception as e: | |
# Print full traceback | |
traceback.print_exc() | |
# Provide more context about the error | |
error_msg = str(e) | |
try: | |
if 'Failed to read frame' in error_msg and cap is not None: | |
# Try to get more info about the video that failed | |
cap_status = "Opened" if cap.isOpened() else "Closed" | |
current_pos = int(cap.get(cv2.CAP_PROP_POS_FRAMES)) if cap.isOpened() else "Unknown" | |
reported_total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) if cap.isOpened() else "Unknown" | |
print_acc(f"Video details when error occurred:") | |
print_acc(f" Cap status: {cap_status}") | |
print_acc(f" Current position: {current_pos}") | |
print_acc(f" Reported total frames: {reported_total}") | |
# Try to verify if the video is corrupted | |
if cap.isOpened(): | |
cap.set(cv2.CAP_PROP_POS_FRAMES, 0) # Go to start | |
start_ret, _ = cap.read() | |
# Try to read the last frame to check if it's accessible | |
if reported_total > 0: | |
cap.set(cv2.CAP_PROP_POS_FRAMES, reported_total - 1) | |
end_ret, _ = cap.read() | |
print_acc(f" Can read first frame: {start_ret}, Can read last frame: {end_ret}") | |
# Close the cap if it's still open | |
cap.release() | |
except Exception as debug_err: | |
print_acc(f"Error during error diagnosis: {debug_err}") | |
print_acc(f"Error: {error_msg}") | |
print_acc(f"Error loading video: {self.path}") | |
# Re-raise with more detailed information | |
raise Exception(f"Video loading error ({self.path}): {error_msg}") from e | |
def load_and_process_image( | |
self: 'FileItemDTO', | |
transform: Union[None, transforms.Compose], | |
only_load_latents=False | |
): | |
if self.dataset_config.num_frames > 1: | |
self.load_and_process_video(transform, only_load_latents) | |
return | |
# if we are caching latents, just do that | |
if self.is_latent_cached: | |
self.get_latent() | |
if self.has_control_image: | |
self.load_control_image() | |
if self.has_inpaint_image: | |
self.load_inpaint_image() | |
if self.has_clip_image: | |
self.load_clip_image() | |
if self.has_mask_image: | |
self.load_mask_image() | |
if self.has_unconditional: | |
self.load_unconditional_image() | |
return | |
try: | |
img = Image.open(self.path) | |
img = exif_transpose(img) | |
except Exception as e: | |
print_acc(f"Error: {e}") | |
print_acc(f"Error loading image: {self.path}") | |
if self.use_alpha_as_mask: | |
# we do this to make sure it does not replace the alpha with another color | |
# we want the image just without the alpha channel | |
np_img = np.array(img) | |
# strip off alpha | |
np_img = np_img[:, :, :3] | |
img = Image.fromarray(np_img) | |
img = img.convert('RGB') | |
w, h = img.size | |
if w > h and self.scale_to_width < self.scale_to_height: | |
# throw error, they should match | |
print_acc( | |
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}") | |
elif h > w and self.scale_to_height < self.scale_to_width: | |
# throw error, they should match | |
print_acc( | |
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}") | |
if self.flip_x: | |
# do a flip | |
img = img.transpose(Image.FLIP_LEFT_RIGHT) | |
if self.flip_y: | |
# do a flip | |
img = img.transpose(Image.FLIP_TOP_BOTTOM) | |
if self.dataset_config.buckets: | |
# scale and crop based on file item | |
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC) | |
# crop to x_crop, y_crop, x_crop + crop_width, y_crop + crop_height | |
if img.width < self.crop_x + self.crop_width or img.height < self.crop_y + self.crop_height: | |
# todo look into this. This still happens sometimes | |
print_acc('size mismatch') | |
img = img.crop(( | |
self.crop_x, | |
self.crop_y, | |
self.crop_x + self.crop_width, | |
self.crop_y + self.crop_height | |
)) | |
# img = transforms.CenterCrop((self.crop_height, self.crop_width))(img) | |
else: | |
# Downscale the source image first | |
# TODO this is nto right | |
img = img.resize( | |
(int(img.size[0] * self.dataset_config.scale), int(img.size[1] * self.dataset_config.scale)), | |
Image.BICUBIC) | |
min_img_size = min(img.size) | |
if self.dataset_config.random_crop: | |
if self.dataset_config.random_scale and min_img_size > self.dataset_config.resolution: | |
if min_img_size < self.dataset_config.resolution: | |
print_acc( | |
f"Unexpected values: min_img_size={min_img_size}, self.resolution={self.dataset_config.resolution}, image file={self.path}") | |
scale_size = self.dataset_config.resolution | |
else: | |
scale_size = random.randint(self.dataset_config.resolution, int(min_img_size)) | |
scaler = scale_size / min_img_size | |
scale_width = int((img.width + 5) * scaler) | |
scale_height = int((img.height + 5) * scaler) | |
img = img.resize((scale_width, scale_height), Image.BICUBIC) | |
img = transforms.RandomCrop(self.dataset_config.resolution)(img) | |
else: | |
img = transforms.CenterCrop(min_img_size)(img) | |
img = img.resize((self.dataset_config.resolution, self.dataset_config.resolution), Image.BICUBIC) | |
if self.augments is not None and len(self.augments) > 0: | |
# do augmentations | |
for augment in self.augments: | |
if augment in transforms_dict: | |
img = transforms_dict[augment](img) | |
if self.has_augmentations: | |
# augmentations handles transforms | |
img = self.augment_image(img, transform=transform) | |
elif transform: | |
img = transform(img) | |
self.tensor = img | |
if not only_load_latents: | |
if self.has_control_image: | |
self.load_control_image() | |
if self.has_inpaint_image: | |
self.load_inpaint_image() | |
if self.has_clip_image: | |
self.load_clip_image() | |
if self.has_mask_image: | |
self.load_mask_image() | |
if self.has_unconditional: | |
self.load_unconditional_image() | |
class InpaintControlFileItemDTOMixin: | |
def __init__(self: 'FileItemDTO', *args, **kwargs): | |
if hasattr(super(), '__init__'): | |
super().__init__(*args, **kwargs) | |
self.has_inpaint_image = False | |
self.inpaint_path: Union[str, None] = None | |
self.inpaint_tensor: Union[torch.Tensor, None] = None | |
dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None) | |
if dataset_config.inpaint_path is not None: | |
# find the control image path | |
inpaint_path = dataset_config.inpaint_path | |
# we are using control images | |
img_path = kwargs.get('path', None) | |
img_inpaint_ext_list = ['.png', '.webp'] | |
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0] | |
for ext in img_inpaint_ext_list: | |
p = os.path.join(inpaint_path, file_name_no_ext + ext) | |
if os.path.exists(p): | |
self.inpaint_path = p | |
self.has_inpaint_image = True | |
break | |
def load_inpaint_image(self: 'FileItemDTO'): | |
try: | |
# image must have alpha channel for inpaint | |
img = Image.open(self.inpaint_path) | |
# make sure has aplha | |
if img.mode != 'RGBA': | |
return | |
img = exif_transpose(img) | |
w, h = img.size | |
if w > h and self.scale_to_width < self.scale_to_height: | |
# throw error, they should match | |
raise ValueError( | |
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}") | |
elif h > w and self.scale_to_height < self.scale_to_width: | |
# throw error, they should match | |
raise ValueError( | |
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}") | |
if self.flip_x: | |
# do a flip | |
img = img.transpose(Image.FLIP_LEFT_RIGHT) | |
if self.flip_y: | |
# do a flip | |
img = img.transpose(Image.FLIP_TOP_BOTTOM) | |
if self.dataset_config.buckets: | |
# scale and crop based on file item | |
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC) | |
# img = transforms.CenterCrop((self.crop_height, self.crop_width))(img) | |
# crop | |
img = img.crop(( | |
self.crop_x, | |
self.crop_y, | |
self.crop_x + self.crop_width, | |
self.crop_y + self.crop_height | |
)) | |
else: | |
raise Exception("Inpaint images not supported for non-bucket datasets") | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
]) | |
if self.aug_replay_spatial_transforms: | |
tensor = self.augment_spatial_control(img, transform=transform) | |
else: | |
tensor = transform(img) | |
# is 0 to 1 with alpha | |
self.inpaint_tensor = tensor | |
except Exception as e: | |
print_acc(f"Error: {e}") | |
print_acc(f"Error loading image: {self.inpaint_path}") | |
def cleanup_inpaint(self: 'FileItemDTO'): | |
self.inpaint_tensor = None | |
class ControlFileItemDTOMixin: | |
def __init__(self: 'FileItemDTO', *args, **kwargs): | |
if hasattr(super(), '__init__'): | |
super().__init__(*args, **kwargs) | |
self.has_control_image = False | |
self.control_path: Union[str, List[str], None] = None | |
self.control_tensor: Union[torch.Tensor, None] = None | |
dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None) | |
self.full_size_control_images = False | |
if dataset_config.control_path is not None: | |
# find the control image path | |
control_path_list = dataset_config.control_path | |
if not isinstance(control_path_list, list): | |
control_path_list = [control_path_list] | |
self.full_size_control_images = dataset_config.full_size_control_images | |
# we are using control images | |
img_path = kwargs.get('path', None) | |
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0] | |
found_control_images = [] | |
for control_path in control_path_list: | |
for ext in img_ext_list: | |
if os.path.exists(os.path.join(control_path, file_name_no_ext + ext)): | |
found_control_images.append(os.path.join(control_path, file_name_no_ext + ext)) | |
self.has_control_image = True | |
break | |
self.control_path = found_control_images | |
if len(self.control_path) == 0: | |
self.control_path = None | |
elif len(self.control_path) == 1: | |
# only do one | |
self.control_path = self.control_path[0] | |
def load_control_image(self: 'FileItemDTO'): | |
control_tensors = [] | |
control_path_list = self.control_path | |
if not isinstance(self.control_path, list): | |
control_path_list = [self.control_path] | |
for control_path in control_path_list: | |
try: | |
img = Image.open(control_path).convert('RGB') | |
img = exif_transpose(img) | |
except Exception as e: | |
print_acc(f"Error: {e}") | |
print_acc(f"Error loading image: {control_path}") | |
if not self.full_size_control_images: | |
# we just scale them to 512x512: | |
w, h = img.size | |
img = img.resize((512, 512), Image.BICUBIC) | |
else: | |
w, h = img.size | |
if w > h and self.scale_to_width < self.scale_to_height: | |
# throw error, they should match | |
raise ValueError( | |
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}") | |
elif h > w and self.scale_to_height < self.scale_to_width: | |
# throw error, they should match | |
raise ValueError( | |
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}") | |
if self.flip_x: | |
# do a flip | |
img = img.transpose(Image.FLIP_LEFT_RIGHT) | |
if self.flip_y: | |
# do a flip | |
img = img.transpose(Image.FLIP_TOP_BOTTOM) | |
if self.dataset_config.buckets: | |
# scale and crop based on file item | |
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC) | |
# img = transforms.CenterCrop((self.crop_height, self.crop_width))(img) | |
# crop | |
img = img.crop(( | |
self.crop_x, | |
self.crop_y, | |
self.crop_x + self.crop_width, | |
self.crop_y + self.crop_height | |
)) | |
else: | |
raise Exception("Control images not supported for non-bucket datasets") | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
]) | |
if self.aug_replay_spatial_transforms: | |
tensor = self.augment_spatial_control(img, transform=transform) | |
else: | |
tensor = transform(img) | |
control_tensors.append(tensor) | |
if len(control_tensors) == 0: | |
self.control_tensor = None | |
elif len(control_tensors) == 1: | |
self.control_tensor = control_tensors[0] | |
else: | |
self.control_tensor = torch.stack(control_tensors, dim=0) | |
def cleanup_control(self: 'FileItemDTO'): | |
self.control_tensor = None | |
class ClipImageFileItemDTOMixin: | |
def __init__(self: 'FileItemDTO', *args, **kwargs): | |
if hasattr(super(), '__init__'): | |
super().__init__(*args, **kwargs) | |
self.has_clip_image = False | |
self.clip_image_path: Union[str, None] = None | |
self.clip_image_tensor: Union[torch.Tensor, None] = None | |
self.clip_image_embeds: Union[dict, None] = None | |
self.clip_image_embeds_unconditional: Union[dict, None] = None | |
self.has_clip_augmentations = False | |
self.clip_image_aug_transform: Union[None, A.Compose] = None | |
self.clip_image_processor: Union[None, CLIPImageProcessor] = None | |
self.clip_image_encoder_path: Union[str, None] = None | |
self.is_caching_clip_vision_to_disk = False | |
self.is_vision_clip_cached = False | |
self.clip_vision_is_quad = False | |
self.clip_vision_load_device = 'cpu' | |
self.clip_vision_unconditional_paths: Union[List[str], None] = None | |
self._clip_vision_embeddings_path: Union[str, None] = None | |
dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None) | |
if dataset_config.clip_image_path is not None or dataset_config.clip_image_from_same_folder: | |
# copy the clip image processor so the dataloader can do it | |
sd = kwargs.get('sd', None) | |
if hasattr(sd.adapter, 'clip_image_processor'): | |
self.clip_image_processor = sd.adapter.clip_image_processor | |
if dataset_config.clip_image_path is not None: | |
# find the control image path | |
clip_image_path = dataset_config.clip_image_path | |
# we are using control images | |
img_path = kwargs.get('path', None) | |
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0] | |
for ext in img_ext_list: | |
if os.path.exists(os.path.join(clip_image_path, file_name_no_ext + ext)): | |
self.clip_image_path = os.path.join(clip_image_path, file_name_no_ext + ext) | |
self.has_clip_image = True | |
break | |
self.build_clip_imag_augmentation_transform() | |
if dataset_config.clip_image_from_same_folder: | |
# assume we have one. We will pull it on load. | |
self.has_clip_image = True | |
self.build_clip_imag_augmentation_transform() | |
def build_clip_imag_augmentation_transform(self: 'FileItemDTO'): | |
if self.dataset_config.clip_image_augmentations is not None and len(self.dataset_config.clip_image_augmentations) > 0: | |
self.has_clip_augmentations = True | |
augmentations = [Augments(**aug) for aug in self.dataset_config.clip_image_augmentations] | |
if self.dataset_config.clip_image_shuffle_augmentations: | |
random.shuffle(augmentations) | |
augmentation_list = [] | |
for aug in augmentations: | |
# make sure method name is valid | |
assert hasattr(A, aug.method_name), f"invalid augmentation method: {aug.method_name}" | |
# get the method | |
method = getattr(A, aug.method_name) | |
# add the method to the list | |
augmentation_list.append(method(**aug.params)) | |
self.clip_image_aug_transform = A.Compose(augmentation_list) | |
def augment_clip_image(self: 'FileItemDTO', img: Image, transform: Union[None, transforms.Compose], ): | |
if self.dataset_config.clip_image_shuffle_augmentations: | |
self.build_clip_imag_augmentation_transform() | |
open_cv_image = np.array(img) | |
# Convert RGB to BGR | |
open_cv_image = open_cv_image[:, :, ::-1].copy() | |
if self.clip_vision_is_quad: | |
# image is in a 2x2 gris. split, run augs, and recombine | |
# split | |
img1, img2 = np.hsplit(open_cv_image, 2) | |
img1_1, img1_2 = np.vsplit(img1, 2) | |
img2_1, img2_2 = np.vsplit(img2, 2) | |
# apply augmentations | |
img1_1 = self.clip_image_aug_transform(image=img1_1)["image"] | |
img1_2 = self.clip_image_aug_transform(image=img1_2)["image"] | |
img2_1 = self.clip_image_aug_transform(image=img2_1)["image"] | |
img2_2 = self.clip_image_aug_transform(image=img2_2)["image"] | |
# recombine | |
augmented = np.vstack((np.hstack((img1_1, img1_2)), np.hstack((img2_1, img2_2)))) | |
else: | |
# apply augmentations | |
augmented = self.clip_image_aug_transform(image=open_cv_image)["image"] | |
# convert back to RGB tensor | |
augmented = cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB) | |
# convert to PIL image | |
augmented = Image.fromarray(augmented) | |
augmented_tensor = transforms.ToTensor()(augmented) if transform is None else transform(augmented) | |
return augmented_tensor | |
def get_clip_vision_info_dict(self: 'FileItemDTO'): | |
item = OrderedDict([ | |
("image_encoder_path", self.clip_image_encoder_path), | |
("filename", os.path.basename(self.clip_image_path)), | |
("is_quad", self.clip_vision_is_quad) | |
]) | |
# when adding items, do it after so we dont change old latents | |
if self.flip_x: | |
item["flip_x"] = True | |
if self.flip_y: | |
item["flip_y"] = True | |
return item | |
def get_clip_vision_embeddings_path(self: 'FileItemDTO', recalculate=False): | |
if self._clip_vision_embeddings_path is not None and not recalculate: | |
return self._clip_vision_embeddings_path | |
else: | |
# we store latents in a folder in same path as image called _latent_cache | |
img_dir = os.path.dirname(self.clip_image_path) | |
latent_dir = os.path.join(img_dir, '_clip_vision_cache') | |
hash_dict = self.get_clip_vision_info_dict() | |
filename_no_ext = os.path.splitext(os.path.basename(self.clip_image_path))[0] | |
# get base64 hash of md5 checksum of hash_dict | |
hash_input = json.dumps(hash_dict, sort_keys=True).encode('utf-8') | |
hash_str = base64.urlsafe_b64encode(hashlib.md5(hash_input).digest()).decode('ascii') | |
hash_str = hash_str.replace('=', '') | |
self._clip_vision_embeddings_path = os.path.join(latent_dir, f'{filename_no_ext}_{hash_str}.safetensors') | |
return self._clip_vision_embeddings_path | |
def get_new_clip_image_path(self: 'FileItemDTO'): | |
if self.dataset_config.clip_image_from_same_folder: | |
# randomly grab an image path from the same folder | |
pool_folder = os.path.dirname(self.path) | |
# find all images in the folder | |
img_files = [] | |
for ext in img_ext_list: | |
img_files += glob.glob(os.path.join(pool_folder, f'*{ext}')) | |
# remove the current image if len is greater than 1 | |
if len(img_files) > 1: | |
img_files.remove(self.path) | |
# randomly grab one | |
return random.choice(img_files) | |
else: | |
return self.clip_image_path | |
def load_clip_image(self: 'FileItemDTO'): | |
is_dynamic_size_and_aspect = isinstance(self.clip_image_processor, PixtralVisionImagePreprocessorCompatible) or \ | |
isinstance(self.clip_image_processor, SiglipImageProcessor) | |
if self.clip_image_processor is None: | |
is_dynamic_size_and_aspect = True # serving it raw | |
if self.is_vision_clip_cached: | |
self.clip_image_embeds = load_file(self.get_clip_vision_embeddings_path()) | |
# get a random unconditional image | |
if self.clip_vision_unconditional_paths is not None: | |
unconditional_path = random.choice(self.clip_vision_unconditional_paths) | |
self.clip_image_embeds_unconditional = load_file(unconditional_path) | |
return | |
clip_image_path = self.get_new_clip_image_path() | |
try: | |
img = Image.open(clip_image_path).convert('RGB') | |
img = exif_transpose(img) | |
except Exception as e: | |
# make a random noise image | |
img = Image.new('RGB', (self.dataset_config.resolution, self.dataset_config.resolution)) | |
print_acc(f"Error: {e}") | |
print_acc(f"Error loading image: {clip_image_path}") | |
img = img.convert('RGB') | |
if self.flip_x: | |
# do a flip | |
img = img.transpose(Image.FLIP_LEFT_RIGHT) | |
if self.flip_y: | |
# do a flip | |
img = img.transpose(Image.FLIP_TOP_BOTTOM) | |
if is_dynamic_size_and_aspect: | |
pass # let the image processor handle it | |
elif img.width != img.height: | |
min_size = min(img.width, img.height) | |
if self.dataset_config.square_crop: | |
# center crop to a square | |
img = transforms.CenterCrop(min_size)(img) | |
else: | |
# image must be square. If it is not, we will resize/squish it so it is, that way we don't crop out data | |
# resize to the smallest dimension | |
img = img.resize((min_size, min_size), Image.BICUBIC) | |
if self.has_clip_augmentations: | |
self.clip_image_tensor = self.augment_clip_image(img, transform=None) | |
else: | |
self.clip_image_tensor = transforms.ToTensor()(img) | |
# random crop | |
# if self.dataset_config.clip_image_random_crop: | |
# # crop up to 20% on all sides. Keep is square | |
# crop_percent = random.randint(0, 20) / 100 | |
# crop_width = int(self.clip_image_tensor.shape[2] * crop_percent) | |
# crop_height = int(self.clip_image_tensor.shape[1] * crop_percent) | |
# crop_left = random.randint(0, crop_width) | |
# crop_top = random.randint(0, crop_height) | |
# crop_right = self.clip_image_tensor.shape[2] - crop_width - crop_left | |
# crop_bottom = self.clip_image_tensor.shape[1] - crop_height - crop_top | |
# if len(self.clip_image_tensor.shape) == 3: | |
# self.clip_image_tensor = self.clip_image_tensor[:, crop_top:-crop_bottom, crop_left:-crop_right] | |
# elif len(self.clip_image_tensor.shape) == 4: | |
# self.clip_image_tensor = self.clip_image_tensor[:, :, crop_top:-crop_bottom, crop_left:-crop_right] | |
if self.clip_image_processor is not None: | |
# run it | |
tensors_0_1 = self.clip_image_tensor.to(dtype=torch.float16) | |
clip_out = self.clip_image_processor( | |
images=tensors_0_1, | |
return_tensors="pt", | |
do_resize=True, | |
do_rescale=False, | |
).pixel_values | |
self.clip_image_tensor = clip_out.squeeze(0).clone().detach() | |
def cleanup_clip_image(self: 'FileItemDTO'): | |
self.clip_image_tensor = None | |
self.clip_image_embeds = None | |
class AugmentationFileItemDTOMixin: | |
def __init__(self: 'FileItemDTO', *args, **kwargs): | |
if hasattr(super(), '__init__'): | |
super().__init__(*args, **kwargs) | |
self.has_augmentations = False | |
self.unaugmented_tensor: Union[torch.Tensor, None] = None | |
# self.augmentations: Union[None, List[Augments]] = None | |
self.dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None) | |
self.aug_transform: Union[None, A.Compose] = None | |
self.aug_replay_spatial_transforms = None | |
self.build_augmentation_transform() | |
def build_augmentation_transform(self: 'FileItemDTO'): | |
if self.dataset_config.augmentations is not None and len(self.dataset_config.augmentations) > 0: | |
self.has_augmentations = True | |
augmentations = [Augments(**aug) for aug in self.dataset_config.augmentations] | |
if self.dataset_config.shuffle_augmentations: | |
random.shuffle(augmentations) | |
augmentation_list = [] | |
for aug in augmentations: | |
# make sure method name is valid | |
assert hasattr(A, aug.method_name), f"invalid augmentation method: {aug.method_name}" | |
# get the method | |
method = getattr(A, aug.method_name) | |
# add the method to the list | |
augmentation_list.append(method(**aug.params)) | |
# add additional targets so we can augment the control image | |
self.aug_transform = A.ReplayCompose(augmentation_list, additional_targets={'image2': 'image'}) | |
def augment_image(self: 'FileItemDTO', img: Image, transform: Union[None, transforms.Compose], ): | |
# rebuild each time if shuffle | |
if self.dataset_config.shuffle_augmentations: | |
self.build_augmentation_transform() | |
# save the original tensor | |
self.unaugmented_tensor = transforms.ToTensor()(img) if transform is None else transform(img) | |
open_cv_image = np.array(img) | |
# Convert RGB to BGR | |
open_cv_image = open_cv_image[:, :, ::-1].copy() | |
# apply augmentations | |
transformed = self.aug_transform(image=open_cv_image) | |
augmented = transformed["image"] | |
# save just the spatial transforms for controls and masks | |
augmented_params = transformed["replay"] | |
spatial_transforms = ['Rotate', 'Flip', 'HorizontalFlip', 'VerticalFlip', 'Resize', 'Crop', 'RandomCrop', | |
'ElasticTransform', 'GridDistortion', 'OpticalDistortion'] | |
# only store the spatial transforms | |
augmented_params['transforms'] = [t for t in augmented_params['transforms'] if t['__class_fullname__'].split('.')[-1] in spatial_transforms] | |
if self.dataset_config.replay_transforms: | |
self.aug_replay_spatial_transforms = augmented_params | |
# convert back to RGB tensor | |
augmented = cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB) | |
# convert to PIL image | |
augmented = Image.fromarray(augmented) | |
augmented_tensor = transforms.ToTensor()(augmented) if transform is None else transform(augmented) | |
return augmented_tensor | |
# augment control images spatially consistent with transforms done to the main image | |
def augment_spatial_control(self: 'FileItemDTO', img: Image, transform: Union[None, transforms.Compose] ): | |
if self.aug_replay_spatial_transforms is None: | |
# no transforms | |
return transform(img) | |
# save colorspace to convert back to | |
colorspace = img.mode | |
# convert to rgb | |
img = img.convert('RGB') | |
open_cv_image = np.array(img) | |
# Convert RGB to BGR | |
open_cv_image = open_cv_image[:, :, ::-1].copy() | |
# Replay transforms | |
transformed = A.ReplayCompose.replay(self.aug_replay_spatial_transforms, image=open_cv_image) | |
augmented = transformed["image"] | |
# convert back to RGB tensor | |
augmented = cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB) | |
# convert to PIL image | |
augmented = Image.fromarray(augmented) | |
# convert back to original colorspace | |
augmented = augmented.convert(colorspace) | |
augmented_tensor = transforms.ToTensor()(augmented) if transform is None else transform(augmented) | |
return augmented_tensor | |
def cleanup_control(self: 'FileItemDTO'): | |
self.unaugmented_tensor = None | |
class MaskFileItemDTOMixin: | |
def __init__(self: 'FileItemDTO', *args, **kwargs): | |
if hasattr(super(), '__init__'): | |
super().__init__(*args, **kwargs) | |
self.has_mask_image = False | |
self.mask_path: Union[str, None] = None | |
self.mask_tensor: Union[torch.Tensor, None] = None | |
self.use_alpha_as_mask: bool = False | |
dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None) | |
self.mask_min_value = dataset_config.mask_min_value | |
if dataset_config.alpha_mask: | |
self.use_alpha_as_mask = True | |
self.mask_path = kwargs.get('path', None) | |
self.has_mask_image = True | |
elif dataset_config.mask_path is not None: | |
# find the control image path | |
mask_path = dataset_config.mask_path if dataset_config.mask_path is not None else dataset_config.alpha_mask | |
# we are using control images | |
img_path = kwargs.get('path', None) | |
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0] | |
for ext in img_ext_list: | |
if os.path.exists(os.path.join(mask_path, file_name_no_ext + ext)): | |
self.mask_path = os.path.join(mask_path, file_name_no_ext + ext) | |
self.has_mask_image = True | |
break | |
def load_mask_image(self: 'FileItemDTO'): | |
try: | |
img = Image.open(self.mask_path) | |
img = exif_transpose(img) | |
except Exception as e: | |
print_acc(f"Error: {e}") | |
print_acc(f"Error loading image: {self.mask_path}") | |
if self.use_alpha_as_mask: | |
# pipeline expectws an rgb image so we need to put alpha in all channels | |
np_img = np.array(img) | |
np_img[:, :, :3] = np_img[:, :, 3:] | |
np_img = np_img[:, :, :3] | |
img = Image.fromarray(np_img) | |
img = img.convert('RGB') | |
if self.dataset_config.invert_mask: | |
img = ImageOps.invert(img) | |
w, h = img.size | |
fix_size = False | |
if w > h and self.scale_to_width < self.scale_to_height: | |
# throw error, they should match | |
print_acc(f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}") | |
fix_size = True | |
elif h > w and self.scale_to_height < self.scale_to_width: | |
# throw error, they should match | |
print_acc(f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}") | |
fix_size = True | |
if fix_size: | |
# swap all the sizes | |
self.scale_to_width, self.scale_to_height = self.scale_to_height, self.scale_to_width | |
self.crop_width, self.crop_height = self.crop_height, self.crop_width | |
self.crop_x, self.crop_y = self.crop_y, self.crop_x | |
if self.flip_x: | |
# do a flip | |
img = img.transpose(Image.FLIP_LEFT_RIGHT) | |
if self.flip_y: | |
# do a flip | |
img = img.transpose(Image.FLIP_TOP_BOTTOM) | |
# randomly apply a blur up to 0.5% of the size of the min (width, height) | |
min_size = min(img.width, img.height) | |
blur_radius = int(min_size * random.random() * 0.005) | |
img = img.filter(ImageFilter.GaussianBlur(radius=blur_radius)) | |
# make grayscale | |
img = img.convert('L') | |
if self.dataset_config.buckets: | |
# scale and crop based on file item | |
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC) | |
# img = transforms.CenterCrop((self.crop_height, self.crop_width))(img) | |
# crop | |
img = img.crop(( | |
self.crop_x, | |
self.crop_y, | |
self.crop_x + self.crop_width, | |
self.crop_y + self.crop_height | |
)) | |
else: | |
raise Exception("Mask images not supported for non-bucket datasets") | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
]) | |
if self.aug_replay_spatial_transforms: | |
self.mask_tensor = self.augment_spatial_control(img, transform=transform) | |
else: | |
self.mask_tensor = transform(img) | |
self.mask_tensor = value_map(self.mask_tensor, 0, 1.0, self.mask_min_value, 1.0) | |
# convert to grayscale | |
def cleanup_mask(self: 'FileItemDTO'): | |
self.mask_tensor = None | |
class UnconditionalFileItemDTOMixin: | |
def __init__(self: 'FileItemDTO', *args, **kwargs): | |
if hasattr(super(), '__init__'): | |
super().__init__(*args, **kwargs) | |
self.has_unconditional = False | |
self.unconditional_path: Union[str, None] = None | |
self.unconditional_tensor: Union[torch.Tensor, None] = None | |
self.unconditional_latent: Union[torch.Tensor, None] = None | |
self.unconditional_transforms = self.dataloader_transforms | |
dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None) | |
if dataset_config.unconditional_path is not None: | |
# we are using control images | |
img_path = kwargs.get('path', None) | |
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0] | |
for ext in img_ext_list: | |
if os.path.exists(os.path.join(dataset_config.unconditional_path, file_name_no_ext + ext)): | |
self.unconditional_path = os.path.join(dataset_config.unconditional_path, file_name_no_ext + ext) | |
self.has_unconditional = True | |
break | |
def load_unconditional_image(self: 'FileItemDTO'): | |
try: | |
img = Image.open(self.unconditional_path) | |
img = exif_transpose(img) | |
except Exception as e: | |
print_acc(f"Error: {e}") | |
print_acc(f"Error loading image: {self.mask_path}") | |
img = img.convert('RGB') | |
w, h = img.size | |
if w > h and self.scale_to_width < self.scale_to_height: | |
# throw error, they should match | |
raise ValueError( | |
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}") | |
elif h > w and self.scale_to_height < self.scale_to_width: | |
# throw error, they should match | |
raise ValueError( | |
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}") | |
if self.flip_x: | |
# do a flip | |
img = img.transpose(Image.FLIP_LEFT_RIGHT) | |
if self.flip_y: | |
# do a flip | |
img = img.transpose(Image.FLIP_TOP_BOTTOM) | |
if self.dataset_config.buckets: | |
# scale and crop based on file item | |
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC) | |
# img = transforms.CenterCrop((self.crop_height, self.crop_width))(img) | |
# crop | |
img = img.crop(( | |
self.crop_x, | |
self.crop_y, | |
self.crop_x + self.crop_width, | |
self.crop_y + self.crop_height | |
)) | |
else: | |
raise Exception("Unconditional images are not supported for non-bucket datasets") | |
if self.aug_replay_spatial_transforms: | |
self.unconditional_tensor = self.augment_spatial_control(img, transform=self.unconditional_transforms) | |
else: | |
self.unconditional_tensor = self.unconditional_transforms(img) | |
def cleanup_unconditional(self: 'FileItemDTO'): | |
self.unconditional_tensor = None | |
self.unconditional_latent = None | |
class PoiFileItemDTOMixin: | |
# Point of interest bounding box. Allows for dynamic cropping without cropping out the main subject | |
# items in the poi will always be inside the image when random cropping | |
def __init__(self: 'FileItemDTO', *args, **kwargs): | |
if hasattr(super(), '__init__'): | |
super().__init__(*args, **kwargs) | |
# poi is a name of the box point of interest in the caption json file | |
dataset_config = kwargs.get('dataset_config', None) | |
path = kwargs.get('path', None) | |
self.poi: Union[str, None] = dataset_config.poi | |
self.has_point_of_interest = self.poi is not None | |
self.poi_x: Union[int, None] = None | |
self.poi_y: Union[int, None] = None | |
self.poi_width: Union[int, None] = None | |
self.poi_height: Union[int, None] = None | |
if self.poi is not None: | |
# make sure latent caching is off | |
if dataset_config.cache_latents or dataset_config.cache_latents_to_disk: | |
raise Exception( | |
f"Error: poi is not supported when caching latents. Please set cache_latents and cache_latents_to_disk to False in the dataset config" | |
) | |
# make sure we are loading through json | |
if dataset_config.caption_ext != 'json': | |
raise Exception( | |
f"Error: poi is only supported when using json captions. Please set caption_ext to json in the dataset config" | |
) | |
self.poi = self.poi.strip() | |
# get the caption path | |
file_path_no_ext = os.path.splitext(path)[0] | |
caption_path = file_path_no_ext + '.json' | |
if not os.path.exists(caption_path): | |
raise Exception(f"Error: caption file not found for poi: {caption_path}") | |
with open(caption_path, 'r', encoding='utf-8') as f: | |
json_data = json.load(f) | |
if 'poi' not in json_data: | |
print_acc(f"Warning: poi not found in caption file: {caption_path}") | |
if self.poi not in json_data['poi']: | |
print_acc(f"Warning: poi not found in caption file: {caption_path}") | |
# poi has, x, y, width, height | |
# do full image if no poi | |
self.poi_x = 0 | |
self.poi_y = 0 | |
self.poi_width = self.width | |
self.poi_height = self.height | |
try: | |
if self.poi in json_data['poi']: | |
poi = json_data['poi'][self.poi] | |
self.poi_x = int(poi['x']) | |
self.poi_y = int(poi['y']) | |
self.poi_width = int(poi['width']) | |
self.poi_height = int(poi['height']) | |
except Exception as e: | |
pass | |
# handle flipping | |
if kwargs.get('flip_x', False): | |
# flip the poi | |
self.poi_x = self.width - self.poi_x - self.poi_width | |
if kwargs.get('flip_y', False): | |
# flip the poi | |
self.poi_y = self.height - self.poi_y - self.poi_height | |
def setup_poi_bucket(self: 'FileItemDTO'): | |
initial_width = int(self.width * self.dataset_config.scale) | |
initial_height = int(self.height * self.dataset_config.scale) | |
# we are using poi, so we need to calculate the bucket based on the poi | |
# if img resolution is less than dataset resolution, just return and let the normal bucketing happen | |
img_resolution = get_resolution(initial_width, initial_height) | |
if img_resolution <= self.dataset_config.resolution: | |
return False # will trigger normal bucketing | |
bucket_tolerance = self.dataset_config.bucket_tolerance | |
poi_x = int(self.poi_x * self.dataset_config.scale) | |
poi_y = int(self.poi_y * self.dataset_config.scale) | |
poi_width = int(self.poi_width * self.dataset_config.scale) | |
poi_height = int(self.poi_height * self.dataset_config.scale) | |
# loop to keep expanding until we are at the proper resolution. This is not ideal, we can probably handle it better | |
num_loops = 0 | |
while True: | |
# crop left | |
if poi_x > 0: | |
poi_x = random.randint(0, poi_x) | |
else: | |
poi_x = 0 | |
# crop right | |
cr_min = poi_x + poi_width | |
if cr_min < initial_width: | |
crop_right = random.randint(poi_x + poi_width, initial_width) | |
else: | |
crop_right = initial_width | |
poi_width = crop_right - poi_x | |
if poi_y > 0: | |
poi_y = random.randint(0, poi_y) | |
else: | |
poi_y = 0 | |
if poi_y + poi_height < initial_height: | |
crop_bottom = random.randint(poi_y + poi_height, initial_height) | |
else: | |
crop_bottom = initial_height | |
poi_height = crop_bottom - poi_y | |
try: | |
# now we have our random crop, but it may be smaller than resolution. Check and expand if needed | |
current_resolution = get_resolution(poi_width, poi_height) | |
except Exception as e: | |
print_acc(f"Error: {e}") | |
print_acc(f"Error getting resolution: {self.path}") | |
raise e | |
return False | |
if current_resolution >= self.dataset_config.resolution: | |
# We can break now | |
break | |
else: | |
num_loops += 1 | |
if num_loops > 100: | |
print_acc( | |
f"Warning: poi bucketing looped too many times. This should not happen. Please report this issue.") | |
return False | |
new_width = poi_width | |
new_height = poi_height | |
bucket_resolution = get_bucket_for_image_size( | |
new_width, new_height, | |
resolution=self.dataset_config.resolution, | |
divisibility=bucket_tolerance | |
) | |
width_scale_factor = bucket_resolution["width"] / new_width | |
height_scale_factor = bucket_resolution["height"] / new_height | |
# Use the maximum of the scale factors to ensure both dimensions are scaled above the bucket resolution | |
max_scale_factor = max(width_scale_factor, height_scale_factor) | |
self.scale_to_width = math.ceil(initial_width * max_scale_factor) | |
self.scale_to_height = math.ceil(initial_height * max_scale_factor) | |
self.crop_width = bucket_resolution['width'] | |
self.crop_height = bucket_resolution['height'] | |
self.crop_x = int(poi_x * max_scale_factor) | |
self.crop_y = int(poi_y * max_scale_factor) | |
if self.scale_to_width < self.crop_x + self.crop_width or self.scale_to_height < self.crop_y + self.crop_height: | |
# todo look into this. This still happens sometimes | |
print_acc('size mismatch') | |
return True | |
class ArgBreakMixin: | |
# just stops super calls form hitting object | |
def __init__(self, *args, **kwargs): | |
pass | |
class LatentCachingFileItemDTOMixin: | |
def __init__(self, *args, **kwargs): | |
# if we have super, call it | |
if hasattr(super(), '__init__'): | |
super().__init__(*args, **kwargs) | |
self._encoded_latent: Union[torch.Tensor, None] = None | |
self._latent_path: Union[str, None] = None | |
self.is_latent_cached = False | |
self.is_caching_to_disk = False | |
self.is_caching_to_memory = False | |
self.latent_load_device = 'cpu' | |
# sd1 or sdxl or others | |
self.latent_space_version = 'sd1' | |
# todo, increment this if we change the latent format to invalidate cache | |
self.latent_version = 1 | |
def get_latent_info_dict(self: 'FileItemDTO'): | |
item = OrderedDict([ | |
("filename", os.path.basename(self.path)), | |
("scale_to_width", self.scale_to_width), | |
("scale_to_height", self.scale_to_height), | |
("crop_x", self.crop_x), | |
("crop_y", self.crop_y), | |
("crop_width", self.crop_width), | |
("crop_height", self.crop_height), | |
("latent_space_version", self.latent_space_version), | |
("latent_version", self.latent_version), | |
]) | |
# when adding items, do it after so we dont change old latents | |
if self.flip_x: | |
item["flip_x"] = True | |
if self.flip_y: | |
item["flip_y"] = True | |
return item | |
def get_latent_path(self: 'FileItemDTO', recalculate=False): | |
if self._latent_path is not None and not recalculate: | |
return self._latent_path | |
else: | |
# we store latents in a folder in same path as image called _latent_cache | |
img_dir = os.path.dirname(self.path) | |
latent_dir = os.path.join(img_dir, '_latent_cache') | |
hash_dict = self.get_latent_info_dict() | |
filename_no_ext = os.path.splitext(os.path.basename(self.path))[0] | |
# get base64 hash of md5 checksum of hash_dict | |
hash_input = json.dumps(hash_dict, sort_keys=True).encode('utf-8') | |
hash_str = base64.urlsafe_b64encode(hashlib.md5(hash_input).digest()).decode('ascii') | |
hash_str = hash_str.replace('=', '') | |
self._latent_path = os.path.join(latent_dir, f'{filename_no_ext}_{hash_str}.safetensors') | |
return self._latent_path | |
def cleanup_latent(self): | |
if self._encoded_latent is not None: | |
if not self.is_caching_to_memory: | |
# we are caching on disk, don't save in memory | |
self._encoded_latent = None | |
else: | |
# move it back to cpu | |
self._encoded_latent = self._encoded_latent.to('cpu') | |
def get_latent(self, device=None): | |
if not self.is_latent_cached: | |
return None | |
if self._encoded_latent is None: | |
# load it from disk | |
state_dict = load_file( | |
self.get_latent_path(), | |
# device=device if device is not None else self.latent_load_device | |
device='cpu' | |
) | |
self._encoded_latent = state_dict['latent'] | |
return self._encoded_latent | |
class LatentCachingMixin: | |
def __init__(self: 'AiToolkitDataset', **kwargs): | |
# if we have super, call it | |
if hasattr(super(), '__init__'): | |
super().__init__(**kwargs) | |
self.latent_cache = {} | |
def cache_latents_all_latents(self: 'AiToolkitDataset'): | |
if self.dataset_config.num_frames > 1: | |
raise Exception("Error: caching latents is not supported for multi-frame datasets") | |
with accelerator.main_process_first(): | |
print_acc(f"Caching latents for {self.dataset_path}") | |
# cache all latents to disk | |
to_disk = self.is_caching_latents_to_disk | |
to_memory = self.is_caching_latents_to_memory | |
if to_disk: | |
print_acc(" - Saving latents to disk") | |
if to_memory: | |
print_acc(" - Keeping latents in memory") | |
# move sd items to cpu except for vae | |
self.sd.set_device_state_preset('cache_latents') | |
# use tqdm to show progress | |
i = 0 | |
for file_item in tqdm(self.file_list, desc=f'Caching latents{" to disk" if to_disk else ""}'): | |
# set latent space version | |
if self.sd.model_config.latent_space_version is not None: | |
file_item.latent_space_version = self.sd.model_config.latent_space_version | |
elif self.sd.is_xl: | |
file_item.latent_space_version = 'sdxl' | |
elif self.sd.is_v3: | |
file_item.latent_space_version = 'sd3' | |
elif self.sd.is_auraflow: | |
file_item.latent_space_version = 'sdxl' | |
elif self.sd.is_flux: | |
file_item.latent_space_version = 'flux1' | |
elif self.sd.model_config.is_pixart_sigma: | |
file_item.latent_space_version = 'sdxl' | |
else: | |
file_item.latent_space_version = self.sd.model_config.arch | |
file_item.is_caching_to_disk = to_disk | |
file_item.is_caching_to_memory = to_memory | |
file_item.latent_load_device = self.sd.device | |
latent_path = file_item.get_latent_path(recalculate=True) | |
# check if it is saved to disk already | |
if os.path.exists(latent_path): | |
if to_memory: | |
# load it into memory | |
state_dict = load_file(latent_path, device='cpu') | |
file_item._encoded_latent = state_dict['latent'].to('cpu', dtype=self.sd.torch_dtype) | |
else: | |
# not saved to disk, calculate | |
# load the image first | |
file_item.load_and_process_image(self.transform, only_load_latents=True) | |
dtype = self.sd.torch_dtype | |
device = self.sd.device_torch | |
# add batch dimension | |
try: | |
imgs = file_item.tensor.unsqueeze(0).to(device, dtype=dtype) | |
latent = self.sd.encode_images(imgs).squeeze(0) | |
except Exception as e: | |
print_acc(f"Error processing image: {file_item.path}") | |
print_acc(f"Error: {str(e)}") | |
raise e | |
# save_latent | |
if to_disk: | |
state_dict = OrderedDict([ | |
('latent', latent.clone().detach().cpu()), | |
]) | |
# metadata | |
meta = get_meta_for_safetensors(file_item.get_latent_info_dict()) | |
os.makedirs(os.path.dirname(latent_path), exist_ok=True) | |
save_file(state_dict, latent_path, metadata=meta) | |
if to_memory: | |
# keep it in memory | |
file_item._encoded_latent = latent.to('cpu', dtype=self.sd.torch_dtype) | |
del imgs | |
del latent | |
del file_item.tensor | |
# flush(garbage_collect=False) | |
file_item.is_latent_cached = True | |
i += 1 | |
# flush every 100 | |
# if i % 100 == 0: | |
# flush() | |
# restore device state | |
self.sd.restore_device_state() | |
class CLIPCachingMixin: | |
def __init__(self: 'AiToolkitDataset', **kwargs): | |
# if we have super, call it | |
if hasattr(super(), '__init__'): | |
super().__init__(**kwargs) | |
self.clip_vision_num_unconditional_cache = 20 | |
self.clip_vision_unconditional_cache = [] | |
def cache_clip_vision_to_disk(self: 'AiToolkitDataset'): | |
if not self.is_caching_clip_vision_to_disk: | |
return | |
with torch.no_grad(): | |
print_acc(f"Caching clip vision for {self.dataset_path}") | |
print_acc(" - Saving clip to disk") | |
# move sd items to cpu except for vae | |
self.sd.set_device_state_preset('cache_clip') | |
# make sure the adapter has attributes | |
if self.sd.adapter is None: | |
raise Exception("Error: must have an adapter to cache clip vision to disk") | |
clip_image_processor: CLIPImageProcessor = None | |
if hasattr(self.sd.adapter, 'clip_image_processor'): | |
clip_image_processor = self.sd.adapter.clip_image_processor | |
if clip_image_processor is None: | |
raise Exception("Error: must have a clip image processor to cache clip vision to disk") | |
vision_encoder: CLIPVisionModelWithProjection = None | |
if hasattr(self.sd.adapter, 'image_encoder'): | |
vision_encoder = self.sd.adapter.image_encoder | |
if hasattr(self.sd.adapter, 'vision_encoder'): | |
vision_encoder = self.sd.adapter.vision_encoder | |
if vision_encoder is None: | |
raise Exception("Error: must have a vision encoder to cache clip vision to disk") | |
# move vision encoder to device | |
vision_encoder.to(self.sd.device) | |
is_quad = self.sd.adapter.config.quad_image | |
image_encoder_path = self.sd.adapter.config.image_encoder_path | |
dtype = self.sd.torch_dtype | |
device = self.sd.device_torch | |
if hasattr(self.sd.adapter, 'clip_noise_zero') and self.sd.adapter.clip_noise_zero: | |
# just to do this, we did :) | |
# need more samples as it is random noise | |
self.clip_vision_num_unconditional_cache = self.clip_vision_num_unconditional_cache | |
else: | |
# only need one since it doesnt change | |
self.clip_vision_num_unconditional_cache = 1 | |
# cache unconditionals | |
print_acc(f" - Caching {self.clip_vision_num_unconditional_cache} unconditional clip vision to disk") | |
clip_vision_cache_path = os.path.join(self.dataset_config.clip_image_path, '_clip_vision_cache') | |
unconditional_paths = [] | |
is_noise_zero = hasattr(self.sd.adapter, 'clip_noise_zero') and self.sd.adapter.clip_noise_zero | |
for i in range(self.clip_vision_num_unconditional_cache): | |
hash_dict = OrderedDict([ | |
("image_encoder_path", image_encoder_path), | |
("is_quad", is_quad), | |
("is_noise_zero", is_noise_zero), | |
]) | |
# get base64 hash of md5 checksum of hash_dict | |
hash_input = json.dumps(hash_dict, sort_keys=True).encode('utf-8') | |
hash_str = base64.urlsafe_b64encode(hashlib.md5(hash_input).digest()).decode('ascii') | |
hash_str = hash_str.replace('=', '') | |
uncond_path = os.path.join(clip_vision_cache_path, f'uncond_{hash_str}_{i}.safetensors') | |
if os.path.exists(uncond_path): | |
# skip it | |
unconditional_paths.append(uncond_path) | |
continue | |
# generate a random image | |
img_shape = (1, 3, self.sd.adapter.input_size, self.sd.adapter.input_size) | |
if is_noise_zero: | |
tensors_0_1 = torch.rand(img_shape).to(device, dtype=torch.float32) | |
else: | |
tensors_0_1 = torch.zeros(img_shape).to(device, dtype=torch.float32) | |
clip_image = clip_image_processor( | |
images=tensors_0_1, | |
return_tensors="pt", | |
do_resize=True, | |
do_rescale=False, | |
).pixel_values | |
if is_quad: | |
# split the 4x4 grid and stack on batch | |
ci1, ci2 = clip_image.chunk(2, dim=2) | |
ci1, ci3 = ci1.chunk(2, dim=3) | |
ci2, ci4 = ci2.chunk(2, dim=3) | |
clip_image = torch.cat([ci1, ci2, ci3, ci4], dim=0).detach() | |
clip_output = vision_encoder( | |
clip_image.to(device, dtype=dtype), | |
output_hidden_states=True | |
) | |
# make state_dict ['last_hidden_state', 'image_embeds', 'penultimate_hidden_states'] | |
state_dict = OrderedDict([ | |
('image_embeds', clip_output.image_embeds.clone().detach().cpu()), | |
('last_hidden_state', clip_output.hidden_states[-1].clone().detach().cpu()), | |
('penultimate_hidden_states', clip_output.hidden_states[-2].clone().detach().cpu()), | |
]) | |
os.makedirs(os.path.dirname(uncond_path), exist_ok=True) | |
save_file(state_dict, uncond_path) | |
unconditional_paths.append(uncond_path) | |
self.clip_vision_unconditional_cache = unconditional_paths | |
# use tqdm to show progress | |
i = 0 | |
for file_item in tqdm(self.file_list, desc=f'Caching clip vision to disk'): | |
file_item.is_caching_clip_vision_to_disk = True | |
file_item.clip_vision_load_device = self.sd.device | |
file_item.clip_vision_is_quad = is_quad | |
file_item.clip_image_encoder_path = image_encoder_path | |
file_item.clip_vision_unconditional_paths = unconditional_paths | |
if file_item.has_clip_augmentations: | |
raise Exception("Error: clip vision caching is not supported with clip augmentations") | |
embedding_path = file_item.get_clip_vision_embeddings_path(recalculate=True) | |
# check if it is saved to disk already | |
if not os.path.exists(embedding_path): | |
# load the image first | |
file_item.load_clip_image() | |
# add batch dimension | |
clip_image = file_item.clip_image_tensor.unsqueeze(0).to(device, dtype=dtype) | |
if is_quad: | |
# split the 4x4 grid and stack on batch | |
ci1, ci2 = clip_image.chunk(2, dim=2) | |
ci1, ci3 = ci1.chunk(2, dim=3) | |
ci2, ci4 = ci2.chunk(2, dim=3) | |
clip_image = torch.cat([ci1, ci2, ci3, ci4], dim=0).detach() | |
clip_output = vision_encoder( | |
clip_image.to(device, dtype=dtype), | |
output_hidden_states=True | |
) | |
# make state_dict ['last_hidden_state', 'image_embeds', 'penultimate_hidden_states'] | |
state_dict = OrderedDict([ | |
('image_embeds', clip_output.image_embeds.clone().detach().cpu()), | |
('last_hidden_state', clip_output.hidden_states[-1].clone().detach().cpu()), | |
('penultimate_hidden_states', clip_output.hidden_states[-2].clone().detach().cpu()), | |
]) | |
# metadata | |
meta = get_meta_for_safetensors(file_item.get_clip_vision_info_dict()) | |
os.makedirs(os.path.dirname(embedding_path), exist_ok=True) | |
save_file(state_dict, embedding_path, metadata=meta) | |
del clip_image | |
del clip_output | |
del file_item.clip_image_tensor | |
# flush(garbage_collect=False) | |
file_item.is_vision_clip_cached = True | |
i += 1 | |
# flush every 100 | |
# if i % 100 == 0: | |
# flush() | |
# restore device state | |
self.sd.restore_device_state() | |
class ControlCachingMixin: | |
def __init__(self: 'AiToolkitDataset', **kwargs): | |
if hasattr(super(), '__init__'): | |
super().__init__(**kwargs) | |
self.control_depth_model = None | |
self.control_pose_model = None | |
self.control_line_model = None | |
self.control_bg_remover = None | |
def get_control_path(self: 'AiToolkitDataset', file_item:'FileItemDTO', control_type: ControlTypes): | |
coltrols_folder = os.path.join(os.path.dirname(file_item.path), '_controls') | |
file_name_no_ext = os.path.splitext(os.path.basename(file_item.path))[0] | |
file_name_no_ext_control = f"{file_name_no_ext}.{control_type}" | |
for ext in img_ext_list: | |
possible_path = os.path.join(coltrols_folder, file_name_no_ext_control + ext) | |
if os.path.exists(possible_path): | |
return possible_path | |
# if we get here, we need to generate the control | |
return None | |
def add_control_path_to_file_item(self: 'AiToolkitDataset', file_item: 'FileItemDTO', control_path: str, control_type: ControlTypes): | |
if control_type == 'inpaint': | |
file_item.inpaint_path = control_path | |
file_item.has_inpaint_image = True | |
elif control_type == 'mask': | |
file_item.mask_path = control_path | |
file_item.has_mask_image = True | |
else: | |
if file_item.control_path is None: | |
file_item.control_path = [control_path] | |
elif isinstance(file_item.control_path, str): | |
file_item.control_path = [file_item.control_path, control_path] | |
elif isinstance(file_item.control_path, list): | |
file_item.control_path.append(control_path) | |
else: | |
raise Exception(f"Error: control_path is not a string or list: {file_item.control_path}") | |
file_item.has_control_image = True | |
def setup_controls(self: 'AiToolkitDataset'): | |
if not self.is_generating_controls: | |
return | |
with torch.no_grad(): | |
print_acc(f"Generating controls for {self.dataset_path}") | |
has_unloaded = False | |
device = self.sd.device | |
# controls 'depth', 'line', 'pose', 'inpaint', 'mask' | |
# use tqdm to show progress | |
i = 0 | |
for file_item in tqdm(self.file_list, desc=f'Generating Controls'): | |
coltrols_folder = os.path.join(os.path.dirname(file_item.path), '_controls') | |
file_name_no_ext = os.path.splitext(os.path.basename(file_item.path))[0] | |
image: Image = None | |
for control_type in self.dataset_config.controls: | |
control_path = self.get_control_path(file_item, control_type) | |
if control_path is not None: | |
self.add_control_path_to_file_item(file_item, control_path, control_type) | |
else: | |
# we need to generate the control. Unload model if not unloaded | |
if not has_unloaded: | |
print("Unloading model to generate controls") | |
self.sd.set_device_state_preset('unload') | |
has_unloaded = True | |
if image is None: | |
# make sure image is loaded if we havent loaded it with another control | |
image = Image.open(file_item.path).convert('RGB') | |
image = exif_transpose(image) | |
# resize to a max of 1mp | |
max_size = 1024 * 1024 | |
w, h = image.size | |
if w * h > max_size: | |
scale = math.sqrt(max_size / (w * h)) | |
w = int(w * scale) | |
h = int(h * scale) | |
image = image.resize((w, h), Image.BICUBIC) | |
save_path = os.path.join(coltrols_folder, f"{file_name_no_ext}.{control_type}.jpg") | |
os.makedirs(coltrols_folder, exist_ok=True) | |
if control_type == 'depth': | |
if self.control_depth_model is None: | |
from transformers import pipeline | |
self.control_depth_model = pipeline( | |
task="depth-estimation", | |
model="depth-anything/Depth-Anything-V2-Large-hf", | |
device=device, | |
torch_dtype=torch.float16 | |
) | |
img = image.copy() | |
in_size = img.size | |
output = self.control_depth_model(img) | |
out_tensor = output["predicted_depth"] # shape (1, H, W) 0 - 255 | |
out_tensor = out_tensor.clamp(0, 255) | |
out_tensor = out_tensor.squeeze(0).cpu().numpy() | |
img = Image.fromarray(out_tensor.astype('uint8')) | |
img = img.resize(in_size, Image.LANCZOS) | |
img.save(save_path) | |
self.add_control_path_to_file_item(file_item, save_path, control_type) | |
elif control_type == 'pose': | |
if self.control_pose_model is None: | |
from controlnet_aux import OpenposeDetector | |
self.control_pose_model = OpenposeDetector.from_pretrained("lllyasviel/Annotators").to(device) | |
img = image.copy() | |
detect_res = int(math.sqrt(img.size[0] * img.size[1])) | |
img = self.control_pose_model(img, hand_and_face=True, detect_resolution=detect_res, image_resolution=detect_res) | |
img = img.convert('RGB') | |
img.save(save_path) | |
self.add_control_path_to_file_item(file_item, save_path, control_type) | |
elif control_type == 'line': | |
if self.control_line_model is None: | |
from controlnet_aux import TEEDdetector | |
self.control_line_model = TEEDdetector.from_pretrained("fal-ai/teed", filename="5_model.pth").to(device) | |
img = image.copy() | |
img = self.control_line_model(img, detect_resolution=1024) | |
img = img.convert('RGB') | |
img.save(save_path) | |
self.add_control_path_to_file_item(file_item, save_path, control_type) | |
elif control_type == 'inpaint' or control_type == 'mask': | |
img = image.copy() | |
if self.control_bg_remover is None: | |
from transformers import AutoModelForImageSegmentation | |
self.control_bg_remover = AutoModelForImageSegmentation.from_pretrained( | |
'ZhengPeng7/BiRefNet_HR', | |
trust_remote_code=True, | |
revision="595e212b3eaa6a1beaad56cee49749b1e00b1596", | |
torch_dtype=torch.float16 | |
).to(device) | |
self.control_bg_remover.eval() | |
image_size = (1024, 1024) | |
transform_image = transforms.Compose([ | |
transforms.Resize(image_size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
input_images = transform_image(img).unsqueeze(0).to('cuda').to(torch.float16) | |
# Prediction | |
preds = self.control_bg_remover(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(img.size) | |
if control_type == 'inpaint': | |
# inpainting feature currently only supports "erased" section desired to inpaint | |
mask = ImageOps.invert(mask) | |
img.putalpha(mask) | |
save_path = os.path.join(coltrols_folder, f"{file_name_no_ext}.{control_type}.webp") | |
else: | |
img = mask | |
img = img.convert('RGB') | |
img.save(save_path) | |
self.add_control_path_to_file_item(file_item, save_path, control_type) | |
else: | |
raise Exception(f"Error: unknown control type {control_type}") | |
i += 1 | |
# remove models | |
self.control_depth_model = None | |
self.control_pose_model = None | |
self.control_line_model = None | |
self.control_bg_remover = None | |
flush() | |
# restore device state | |
if has_unloaded: | |
self.sd.restore_device_state() | |