Spaces:
Paused
Paused
import torch | |
from safetensors.torch import load_file, save_file | |
from collections import OrderedDict | |
meta = OrderedDict() | |
meta['format'] = "pt" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def reduce_weight(weight, target_size): | |
weight = weight.to(device, torch.float32) | |
original_shape = weight.shape | |
if len(original_shape) == 1: | |
# For 1D tensors, simply truncate | |
return weight[:target_size] | |
if original_shape[0] <= target_size: | |
return weight | |
# Reshape the tensor to 2D | |
flattened = weight.reshape(original_shape[0], -1) | |
# Perform SVD | |
U, S, V = torch.svd(flattened) | |
# Reduce the dimensions | |
reduced = torch.mm(U[:target_size, :], torch.diag(S)).mm(V.t()) | |
# Reshape back to the original shape with reduced first dimension | |
new_shape = (target_size,) + original_shape[1:] | |
return reduced.reshape(new_shape) | |
def reduce_bias(bias, target_size): | |
bias = bias.to(device, torch.float32) | |
return bias[:target_size] | |
# Load your original state dict | |
state_dict = load_file( | |
"/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-512_MS_t5large_raw/transformer/diffusion_pytorch_model.orig.safetensors") | |
# Create a new state dict for the reduced model | |
new_state_dict = {} | |
for key, value in state_dict.items(): | |
value = value.to(device, torch.float32) | |
if 'weight' in key or 'scale_shift_table' in key: | |
if value.shape[0] == 1152: | |
if len(value.shape) == 4: | |
orig_shape = value.shape | |
output_shape = (512, orig_shape[1], orig_shape[2], orig_shape[3]) # reshape to (1152, -1) | |
# reshape to (1152, -1) | |
value = value.view(value.shape[0], -1) | |
value = reduce_weight(value, 512) | |
value = value.view(output_shape) | |
else: | |
# value = reduce_weight(value.t(), 576).t().contiguous() | |
value = reduce_weight(value, 512) | |
pass | |
elif value.shape[0] == 4608: | |
if len(value.shape) == 4: | |
orig_shape = value.shape | |
output_shape = (2048, orig_shape[1], orig_shape[2], orig_shape[3]) | |
value = value.view(value.shape[0], -1) | |
value = reduce_weight(value, 2048) | |
value = value.view(output_shape) | |
else: | |
value = reduce_weight(value, 2048) | |
elif value.shape[0] == 6912: | |
if len(value.shape) == 4: | |
orig_shape = value.shape | |
output_shape = (3072, orig_shape[1], orig_shape[2], orig_shape[3]) | |
value = value.view(value.shape[0], -1) | |
value = reduce_weight(value, 3072) | |
value = value.view(output_shape) | |
else: | |
value = reduce_weight(value, 3072) | |
if len(value.shape) > 1 and value.shape[ | |
1] == 1152 and 'attn2.to_k.weight' not in key and 'attn2.to_v.weight' not in key: | |
value = reduce_weight(value.t(), 512).t().contiguous() # Transpose before and after reduction | |
pass | |
elif len(value.shape) > 1 and value.shape[1] == 4608: | |
value = reduce_weight(value.t(), 2048).t().contiguous() # Transpose before and after reduction | |
pass | |
elif 'bias' in key: | |
if value.shape[0] == 1152: | |
value = reduce_bias(value, 512) | |
elif value.shape[0] == 4608: | |
value = reduce_bias(value, 2048) | |
elif value.shape[0] == 6912: | |
value = reduce_bias(value, 3072) | |
new_state_dict[key] = value | |
# Move all to CPU and convert to float16 | |
for key, value in new_state_dict.items(): | |
new_state_dict[key] = value.cpu().to(torch.float16) | |
# Save the new state dict | |
save_file(new_state_dict, | |
"/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-512_MS_t5large_raw/transformer/diffusion_pytorch_model.safetensors", | |
metadata=meta) | |
print("Done!") |