Spaces:
Paused
Paused
import os | |
from typing import TYPE_CHECKING, List | |
import torch | |
import torchvision | |
import yaml | |
from toolkit import train_tools | |
from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
from PIL import Image | |
from toolkit.models.base_model import BaseModel | |
from diffusers import FluxTransformer2DModel, AutoencoderKL | |
from toolkit.basic import flush | |
from toolkit.prompt_utils import PromptEmbeds | |
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance | |
from toolkit.dequantize import patch_dequantization_on_save | |
from toolkit.accelerator import get_accelerator, unwrap_model | |
from optimum.quanto import freeze, QTensor | |
from toolkit.util.mask import generate_random_mask, random_dialate_mask | |
from toolkit.util.quantize import quantize, get_qtype | |
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer | |
from .pipeline import Flex2Pipeline | |
from einops import rearrange, repeat | |
import random | |
import torch.nn.functional as F | |
if TYPE_CHECKING: | |
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
scheduler_config = { | |
"base_image_seq_len": 256, | |
"base_shift": 0.5, | |
"max_image_seq_len": 4096, | |
"max_shift": 1.15, | |
"num_train_timesteps": 1000, | |
"shift": 3.0, | |
"use_dynamic_shifting": True | |
} | |
def random_blur(img, min_kernel_size=3, max_kernel_size=23, p=0.5): | |
if random.random() < p: | |
kernel_size = random.randint(min_kernel_size, max_kernel_size) | |
# make sure it is odd | |
if kernel_size % 2 == 0: | |
kernel_size += 1 | |
img = torchvision.transforms.functional.gaussian_blur(img, kernel_size=kernel_size) | |
return img | |
class Flex2(BaseModel): | |
arch = "flex2" | |
def __init__( | |
self, | |
device, | |
model_config: ModelConfig, | |
dtype='bf16', | |
custom_pipeline=None, | |
noise_scheduler=None, | |
**kwargs | |
): | |
super().__init__( | |
device, | |
model_config, | |
dtype, | |
custom_pipeline, | |
noise_scheduler, | |
**kwargs | |
) | |
self.is_flow_matching = True | |
self.is_transformer = True | |
self.target_lora_modules = ['FluxTransformer2DModel'] | |
# for training, pass these as kwargs | |
self.invert_inpaint_mask_chance = model_config.model_kwargs.get('invert_inpaint_mask_chance', 0.0) | |
self.inpaint_dropout = model_config.model_kwargs.get('inpaint_dropout', 0.0) | |
self.control_dropout = model_config.model_kwargs.get('control_dropout', 0.0) | |
self.inpaint_random_chance = model_config.model_kwargs.get('inpaint_random_chance', 0.0) | |
self.random_blur_mask = model_config.model_kwargs.get('random_blur_mask', False) | |
self.random_dialate_mask = model_config.model_kwargs.get('random_dialate_mask', False) | |
self.do_random_inpainting = model_config.model_kwargs.get('do_random_inpainting', False) | |
# static method to get the noise scheduler | |
def get_train_scheduler(): | |
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) | |
def get_bucket_divisibility(self): | |
return 16 | |
def load_model(self): | |
dtype = self.torch_dtype | |
self.print_and_status_update("Loading Flux2 model") | |
# will be updated if we detect a existing checkpoint in training folder | |
model_path = self.model_config.name_or_path | |
# this is the original path put in the model directory | |
# it is here because for finetuning we only save the transformer usually | |
# so we need this for the VAE, te, etc | |
base_model_path = self.model_config.name_or_path_original | |
transformer_path = model_path | |
transformer_subfolder = 'transformer' | |
if os.path.exists(transformer_path): | |
transformer_subfolder = None | |
transformer_path = os.path.join(transformer_path, 'transformer') | |
# check if the path is a full checkpoint. | |
te_folder_path = os.path.join(model_path, 'text_encoder') | |
# if we have the te, this folder is a full checkpoint, use it as the base | |
if os.path.exists(te_folder_path): | |
base_model_path = model_path | |
self.print_and_status_update("Loading transformer") | |
transformer = FluxTransformer2DModel.from_pretrained( | |
transformer_path, | |
subfolder=transformer_subfolder, | |
torch_dtype=dtype, | |
) | |
transformer.to(self.quantize_device, dtype=dtype) | |
if self.model_config.quantize: | |
# patch the state dict method | |
patch_dequantization_on_save(transformer) | |
quantization_type = get_qtype(self.model_config.qtype) | |
self.print_and_status_update("Quantizing transformer") | |
quantize(transformer, weights=quantization_type, | |
**self.model_config.quantize_kwargs) | |
freeze(transformer) | |
transformer.to(self.device_torch) | |
else: | |
transformer.to(self.device_torch, dtype=dtype) | |
flush() | |
self.print_and_status_update("Loading T5") | |
tokenizer_2 = T5TokenizerFast.from_pretrained( | |
base_model_path, subfolder="tokenizer_2", torch_dtype=dtype | |
) | |
text_encoder_2 = T5EncoderModel.from_pretrained( | |
base_model_path, subfolder="text_encoder_2", torch_dtype=dtype | |
) | |
text_encoder_2.to(self.device_torch, dtype=dtype) | |
flush() | |
if self.model_config.quantize_te: | |
self.print_and_status_update("Quantizing T5") | |
quantize(text_encoder_2, weights=get_qtype( | |
self.model_config.qtype)) | |
freeze(text_encoder_2) | |
flush() | |
self.print_and_status_update("Loading CLIP") | |
text_encoder = CLIPTextModel.from_pretrained( | |
base_model_path, subfolder="text_encoder", torch_dtype=dtype) | |
tokenizer = CLIPTokenizer.from_pretrained( | |
base_model_path, subfolder="tokenizer", torch_dtype=dtype) | |
text_encoder.to(self.device_torch, dtype=dtype) | |
self.print_and_status_update("Loading VAE") | |
vae = AutoencoderKL.from_pretrained( | |
base_model_path, subfolder="vae", torch_dtype=dtype) | |
self.noise_scheduler = Flex2.get_train_scheduler() | |
self.print_and_status_update("Making pipe") | |
pipe: Flex2Pipeline = Flex2Pipeline( | |
scheduler=self.noise_scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=None, | |
tokenizer_2=tokenizer_2, | |
vae=vae, | |
transformer=None, | |
) | |
# for quantization, it works best to do these after making the pipe | |
pipe.text_encoder_2 = text_encoder_2 | |
pipe.transformer = transformer | |
self.print_and_status_update("Preparing Model") | |
text_encoder = [pipe.text_encoder, pipe.text_encoder_2] | |
tokenizer = [pipe.tokenizer, pipe.tokenizer_2] | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
# just to make sure everything is on the right device and dtype | |
text_encoder[0].to(self.device_torch) | |
text_encoder[0].requires_grad_(False) | |
text_encoder[0].eval() | |
text_encoder[1].to(self.device_torch) | |
text_encoder[1].requires_grad_(False) | |
text_encoder[1].eval() | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
# save it to the model class | |
self.vae = vae | |
self.text_encoder = text_encoder # list of text encoders | |
self.tokenizer = tokenizer # list of tokenizers | |
self.model = pipe.transformer | |
self.pipeline = pipe | |
self.print_and_status_update("Model Loaded") | |
def get_generation_pipeline(self): | |
scheduler = Flex2.get_train_scheduler() | |
pipeline: Flex2Pipeline = Flex2Pipeline( | |
scheduler=scheduler, | |
text_encoder=unwrap_model(self.text_encoder[0]), | |
tokenizer=self.tokenizer[0], | |
text_encoder_2=unwrap_model(self.text_encoder[1]), | |
tokenizer_2=self.tokenizer[1], | |
vae=unwrap_model(self.vae), | |
transformer=unwrap_model(self.transformer) | |
) | |
pipeline = pipeline.to(self.device_torch) | |
return pipeline | |
def generate_single_image( | |
self, | |
pipeline: Flex2Pipeline, | |
gen_config: GenerateImageConfig, | |
conditional_embeds: PromptEmbeds, | |
unconditional_embeds: PromptEmbeds, | |
generator: torch.Generator, | |
extra: dict, | |
): | |
if gen_config.ctrl_img is None: | |
control_img = None | |
else: | |
control_img = Image.open(gen_config.ctrl_img) | |
if ".inpaint." not in gen_config.ctrl_img: | |
control_img = control_img.convert("RGB") | |
else: | |
# make sure it has an alpha | |
if control_img.mode != "RGBA": | |
raise ValueError("Inpainting images must have an alpha channel") | |
img = pipeline( | |
prompt_embeds=conditional_embeds.text_embeds, | |
pooled_prompt_embeds=conditional_embeds.pooled_embeds, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
generator=generator, | |
control_image=control_img, | |
control_image_idx=gen_config.ctrl_idx, | |
**extra | |
).images[0] | |
return img | |
def get_noise_prediction( | |
self, | |
latent_model_input: torch.Tensor, | |
timestep: torch.Tensor, # 0 to 1000 scale | |
text_embeddings: PromptEmbeds, | |
guidance_embedding_scale: float, | |
bypass_guidance_embedding: bool, | |
**kwargs | |
): | |
with torch.no_grad(): | |
bs, c, h, w = latent_model_input.shape | |
latent_model_input_packed = rearrange( | |
latent_model_input, | |
"b c (h ph) (w pw) -> b (h w) (c ph pw)", | |
ph=2, | |
pw=2 | |
) | |
img_ids = torch.zeros(h // 2, w // 2, 3) | |
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
img_ids = repeat(img_ids, "h w c -> b (h w) c", | |
b=bs).to(self.device_torch) | |
txt_ids = torch.zeros( | |
bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch) | |
# # handle guidance | |
if self.unet_unwrapped.config.guidance_embeds: | |
if isinstance(guidance_embedding_scale, list): | |
guidance = torch.tensor( | |
guidance_embedding_scale, device=self.device_torch) | |
else: | |
guidance = torch.tensor( | |
[guidance_embedding_scale], device=self.device_torch) | |
guidance = guidance.expand(latent_model_input.shape[0]) | |
else: | |
guidance = None | |
if bypass_guidance_embedding: | |
bypass_flux_guidance(self.unet) | |
cast_dtype = self.unet.dtype | |
# changes from orig implementation | |
if txt_ids.ndim == 3: | |
txt_ids = txt_ids[0] | |
if img_ids.ndim == 3: | |
img_ids = img_ids[0] | |
noise_pred = self.unet( | |
hidden_states=latent_model_input_packed.to( | |
self.device_torch, cast_dtype), | |
timestep=timestep / 1000, | |
encoder_hidden_states=text_embeddings.text_embeds.to( | |
self.device_torch, cast_dtype), | |
pooled_projections=text_embeddings.pooled_embeds.to( | |
self.device_torch, cast_dtype), | |
txt_ids=txt_ids, | |
img_ids=img_ids, | |
guidance=guidance, | |
return_dict=False, | |
**kwargs, | |
)[0] | |
if isinstance(noise_pred, QTensor): | |
noise_pred = noise_pred.dequantize() | |
noise_pred = rearrange( | |
noise_pred, | |
"b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
h=latent_model_input.shape[2] // 2, | |
w=latent_model_input.shape[3] // 2, | |
ph=2, | |
pw=2, | |
c=self.vae.config.latent_channels | |
) | |
if bypass_guidance_embedding: | |
restore_flux_guidance(self.unet) | |
return noise_pred | |
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: | |
if self.pipeline.text_encoder.device != self.device_torch: | |
self.pipeline.text_encoder.to(self.device_torch) | |
prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux( | |
self.tokenizer, | |
self.text_encoder, | |
prompt, | |
max_length=512, | |
) | |
pe = PromptEmbeds( | |
prompt_embeds | |
) | |
pe.pooled_embeds = pooled_prompt_embeds | |
return pe | |
def get_model_has_grad(self): | |
# return from a weight if it has grad | |
return self.model.proj_out.weight.requires_grad | |
def get_te_has_grad(self): | |
# return from a weight if it has grad | |
return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad | |
def save_model(self, output_path, meta, save_dtype): | |
# only save the unet | |
transformer: FluxTransformer2DModel = unwrap_model(self.model) | |
transformer.save_pretrained( | |
save_directory=os.path.join(output_path, 'transformer'), | |
safe_serialization=True, | |
) | |
meta_path = os.path.join(output_path, 'aitk_meta.yaml') | |
with open(meta_path, 'w') as f: | |
yaml.dump(meta, f) | |
def get_loss_target(self, *args, **kwargs): | |
noise = kwargs.get('noise') | |
batch = kwargs.get('batch') | |
return (noise - batch.latents).detach() | |
def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'): | |
with torch.no_grad(): | |
# inpainting input is 0-1 (bs, 4, h, w) on batch.inpaint_tensor | |
# 4th channel is the mask with 1 being keep area and 0 being area to inpaint. | |
# todo handle dropout on a batch item level, this frops out the entire batch | |
do_dropout = random.random() < self.inpaint_dropout if self.inpaint_dropout > 0.0 else False | |
# do random mask if we dont have one | |
inpaint_tensor = batch.inpaint_tensor | |
if inpaint_tensor is None and batch.mask_tensor is not None: | |
# we have a mask tensor, use it | |
inpaint_tensor = batch.mask_tensor | |
if self.inpaint_random_chance > 0.0: | |
do_random = random.random() < self.inpaint_random_chance | |
if do_random: | |
# force a random tensor | |
inpaint_tensor = None | |
if inpaint_tensor is None and not do_dropout and self.do_random_inpainting: | |
# generate a random one since we dont have one | |
# this will make random blobs, invert the blobs for now as we normanlly inpaint the alpha | |
inpaint_tensor = 1 - generate_random_mask( | |
batch_size=latents.shape[0], | |
height=latents.shape[2], | |
width=latents.shape[3], | |
device=latents.device, | |
).to(latents.device, latents.dtype) | |
if inpaint_tensor is not None and not do_dropout: | |
if inpaint_tensor.shape[1] == 4: | |
# get just the mask | |
inpainting_tensor_mask = inpaint_tensor[:, 3:4, :, :].to(latents.device, dtype=latents.dtype) | |
elif inpaint_tensor.shape[1] == 3: | |
# rgb mask. Just get one channel | |
inpainting_tensor_mask = inpaint_tensor[:, 0:1, :, :].to(latents.device, dtype=latents.dtype) | |
# mask is 0-1 with 1 being inpaint area, we need to invert it for now, it is re inverted later | |
inpaint_tensor = 1 - inpaint_tensor | |
else: | |
inpainting_tensor_mask = inpaint_tensor | |
# # use our batch latents so we cna avoid encoding again | |
inpainting_latent = batch.latents | |
# resize the mask to match the new encoded size | |
inpainting_tensor_mask = F.interpolate(inpainting_tensor_mask, size=(inpainting_latent.shape[2], inpainting_latent.shape[3]), mode='bilinear') | |
inpainting_tensor_mask = inpainting_tensor_mask.to(latents.device, latents.dtype) | |
if self.random_blur_mask: | |
# blur the mask | |
# Give it a channel dim of 1 | |
if len(inpainting_tensor_mask.shape) == 3: | |
# if it is 3d, add a channel dim | |
inpainting_tensor_mask = inpainting_tensor_mask.unsqueeze(1) | |
# we are at latent size, so keep kernel smaller | |
inpainting_tensor_mask = random_blur( | |
inpainting_tensor_mask, | |
min_kernel_size=3, | |
max_kernel_size=8, | |
p=0.5 | |
) | |
do_mask_invert = False | |
if self.invert_inpaint_mask_chance > 0.0: | |
do_mask_invert = random.random() < self.invert_inpaint_mask_chance | |
if do_mask_invert: | |
# invert the mask | |
inpainting_tensor_mask = 1 - inpainting_tensor_mask | |
# mask out the inpainting area, it is currently 0 for inpaint area, and 1 for keep area | |
# we are zeroing our the latents in the inpaint area not on the pixel space. | |
inpainting_latent = inpainting_latent * inpainting_tensor_mask | |
# do the random dialation after the mask is applied so it does not match perfectly. | |
# this will make the model learn to prevent weird edges | |
if self.random_dialate_mask: | |
inpainting_tensor_mask = random_dialate_mask( | |
inpainting_tensor_mask, | |
max_percent=0.05 | |
) | |
# mask needs to be 1 for inpaint area and 0 for area to leave alone. So flip it. | |
inpainting_tensor_mask = 1 - inpainting_tensor_mask | |
# leave the mask as 0-1 and concat on channel of latents | |
inpainting_latent = torch.cat((inpainting_latent, inpainting_tensor_mask), dim=1) | |
else: | |
# we have iinpainting but didnt get a control. or we are doing a dropout | |
# the input needs to be all zeros for the latents and all 1s for the mask | |
inpainting_latent = torch.zeros_like(latents) | |
# add ones for the mask since we are technically inpainting everything | |
inpainting_latent = torch.cat((inpainting_latent, torch.ones_like(inpainting_latent[:, :1, :, :])), dim=1) | |
control_tensor = batch.control_tensor | |
if control_tensor is None: | |
# concat random normal noise onto the latents | |
# check dimension, this is before they are rearranged | |
# it is latent_model_input = torch.cat([latents, control_image], dim=2) after rearranging | |
ctrl = torch.zeros( | |
latents.shape[0], # bs | |
latents.shape[1], | |
latents.shape[2], | |
latents.shape[3], | |
device=latents.device, | |
dtype=latents.dtype | |
) | |
# inpainting always comes first | |
ctrl = torch.cat((inpainting_latent, ctrl), dim=1) | |
latents = torch.cat((latents, ctrl), dim=1) | |
return latents.detach() | |
# if we have multiple control tensors, they come in like [bs, num_control_images, ch, h, w] | |
# if we have 1, it comes in like [bs, ch, h, w] | |
# stack out control tensors to be [bs, ch * num_control_images, h, w] | |
control_tensor_list = [] | |
if len(control_tensor.shape) == 4: | |
control_tensor_list.append(control_tensor) | |
else: | |
num_control_images = control_tensor.shape[1] | |
# reshape | |
control_tensor = control_tensor.view( | |
control_tensor.shape[0], | |
control_tensor.shape[1] * control_tensor.shape[2], | |
control_tensor.shape[3], | |
control_tensor.shape[4] | |
) | |
control_tensor_list = control_tensor.chunk(num_control_images, dim=1) | |
do_dropout = random.random() < self.control_dropout if self.control_dropout > 0.0 else False | |
if do_dropout: | |
# dropout with zeros | |
control_latent = torch.zeros_like(batch.latents) | |
else: | |
# we only have one control so we randomly pick from this list | |
control_tensor = random.choice(control_tensor_list) | |
# it is 0-1 need to convert to -1 to 1 | |
control_tensor = control_tensor * 2 - 1 | |
control_tensor = control_tensor.to(self.vae_device_torch, dtype=self.torch_dtype) | |
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it | |
if control_tensor.shape[2] != batch.tensor.shape[2] or control_tensor.shape[3] != batch.tensor.shape[3]: | |
control_tensor = F.interpolate(control_tensor, size=(batch.tensor.shape[2], batch.tensor.shape[3]), mode='bilinear') | |
# encode it | |
control_latent = self.encode_images(control_tensor).to(latents.device, latents.dtype) | |
# inpainting always comes first | |
control_latent = torch.cat((inpainting_latent, control_latent), dim=1) | |
# concat it onto the latents | |
latents = torch.cat((latents, control_latent), dim=1) | |
return latents.detach() |