LoRa_Streamlit / ai-toolkit /toolkit /pixel_shuffle_encoder.py
ramimu's picture
Upload 586 files
1c72248 verified
raw
history blame
6.19 kB
from diffusers import AutoencoderKL
from typing import Optional, Union
import torch
import torch.nn as nn
import numpy as np
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKLOutput
from diffusers.models.autoencoders.vae import DecoderOutput
class PixelMixer(nn.Module):
def __init__(self, in_channels, downscale_factor):
super(PixelMixer, self).__init__()
self.downscale_factor = downscale_factor
self.in_channels = in_channels
def forward(self, x):
latent = self.encode(x)
out = self.decode(latent)
return out
def encode(self, x):
return torch.nn.PixelUnshuffle(self.downscale_factor)(x)
def decode(self, x):
return torch.nn.PixelShuffle(self.downscale_factor)(x)
# for reference
# none of this matters with llvae, but we need to match the interface (latent_channels might matter)
class Config:
in_channels = 3
out_channels = 3
down_block_types = ('1', '1',
'1', '1')
up_block_types = ('1', '1',
'1', '1')
block_out_channels = (1, 1, 1, 1)
latent_channels = 192 # usually 4
norm_num_groups = 32
sample_size = 512
# scaling_factor = 1
# shift_factor = 0
scaling_factor = 1.8
shift_factor = -0.123
# VAE
# - Mean: -0.12306906282901764
# - Std: 0.556016206741333
# Normalization parameters:
# - Shift factor: -0.12306906282901764
# - Scaling factor: 1.7985087266803625
def __getitem__(cls, x):
return getattr(cls, x)
class AutoencoderPixelMixer(nn.Module):
def __init__(self, in_channels=3, downscale_factor=8):
super().__init__()
self.mixer = PixelMixer(in_channels, downscale_factor)
self._dtype = torch.float32
self._device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
self.config = Config()
if downscale_factor == 8:
# we go by len of block out channels in code, so simulate it
self.config.block_out_channels = (1, 1, 1, 1)
self.config.latent_channels = 192
elif downscale_factor == 16:
# we go by len of block out channels in code, so simulate it
self.config.block_out_channels = (1, 1, 1, 1, 1)
self.config.latent_channels = 768
else:
raise ValueError(
f"downscale_factor {downscale_factor} not supported")
@property
def dtype(self):
return self._dtype
@dtype.setter
def dtype(self, value):
self._dtype = value
@property
def device(self):
return self._device
@device.setter
def device(self, value):
self._device = value
# mimic to from torch
def to(self, *args, **kwargs):
# pull out dtype and device if they exist
if 'dtype' in kwargs:
self._dtype = kwargs['dtype']
if 'device' in kwargs:
self._device = kwargs['device']
return super().to(*args, **kwargs)
def enable_xformers_memory_efficient_attention(self):
pass
# @apply_forward_hook
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
h = self.mixer.encode(x)
# moments = self.quant_conv(h)
# posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (h,)
class FakeDist:
def __init__(self, x):
self._sample = x
def sample(self):
return self._sample
return AutoencoderKLOutput(latent_dist=FakeDist(h))
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
dec = self.mixer.decode(z)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
# @apply_forward_hook
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def _set_gradient_checkpointing(self, module, value=False):
pass
def enable_tiling(self, use_tiling: bool = True):
pass
def disable_tiling(self):
pass
def enable_slicing(self):
pass
def disable_slicing(self):
pass
def set_use_memory_efficient_attention_xformers(self, value: bool = True):
pass
def forward(
self,
sample: torch.FloatTensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput, torch.FloatTensor]:
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
# test it
if __name__ == '__main__':
import os
from PIL import Image
import torchvision.transforms as transforms
user_path = os.path.expanduser('~')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
input_path = os.path.join(user_path, "Pictures/test/test.jpg")
output_path = os.path.join(user_path, "Pictures/test/test.jpg")
img = Image.open(input_path)
img_tensor = transforms.ToTensor()(img)
img_tensor = img_tensor.unsqueeze(0).to(device=device, dtype=dtype)
print("input_shape: ", list(img_tensor.shape))
vae = PixelMixer(in_channels=3, downscale_factor=8)
latent = vae.encode(img_tensor)
print("latent_shape: ", list(latent.shape))
out_tensor = vae.decode(latent)
print("out_shape: ", list(out_tensor.shape))
mse_loss = nn.MSELoss()
mse = mse_loss(img_tensor, out_tensor)
print("roundtrip_loss: ", mse.item())
out_img = transforms.ToPILImage()(out_tensor.squeeze(0))
out_img.save(output_path)