LoRa_Streamlit / ai-toolkit /toolkit /custom_adapter.py
ramimu's picture
Upload 586 files
1c72248 verified
raw
history blame
67.4 kB
import math
import torch
import sys
from PIL import Image
from torch.nn import Parameter
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, CLIPTextModel, \
CLIPTokenizer, T5Tokenizer
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.models.clip_fusion import CLIPFusionModule
from toolkit.models.clip_pre_processor import CLIPImagePreProcessor
from toolkit.models.control_lora_adapter import ControlLoraAdapter
from toolkit.models.i2v_adapter import I2VAdapter
from toolkit.models.subpixel_adapter import SubpixelAdapter
from toolkit.models.ilora import InstantLoRAModule
from toolkit.models.single_value_adapter import SingleValueAdapter
from toolkit.models.te_adapter import TEAdapter
from toolkit.models.te_aug_adapter import TEAugAdapter
from toolkit.models.vd_adapter import VisionDirectAdapter
from toolkit.models.redux import ReduxImageEncoder
from toolkit.photomaker import PhotoMakerIDEncoder, FuseModule, PhotoMakerCLIPEncoder
from toolkit.saving import load_ip_adapter_model, load_custom_adapter_model
from toolkit.train_tools import get_torch_dtype
from toolkit.models.pixtral_vision import PixtralVisionEncoderCompatible, PixtralVisionImagePreprocessorCompatible
import random
from toolkit.util.mask import generate_random_mask
from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional, Dict
from collections import OrderedDict
from toolkit.config_modules import AdapterConfig, AdapterTypes, TrainConfig
from toolkit.prompt_utils import PromptEmbeds
import weakref
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPVisionModel,
AutoImageProcessor,
ConvNextModel,
ConvNextForImageClassification,
ConvNextImageProcessor,
UMT5EncoderModel, LlamaTokenizerFast, AutoModel, AutoTokenizer, BitsAndBytesConfig
)
from toolkit.models.size_agnostic_feature_encoder import SAFEImageProcessor, SAFEVisionModel
from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification
from transformers import ViTFeatureExtractor, ViTForImageClassification
from toolkit.models.llm_adapter import LLMAdapter
import torch.nn.functional as F
class CustomAdapter(torch.nn.Module):
def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig', train_config: 'TrainConfig'):
super().__init__()
self.config = adapter_config
self.sd_ref: weakref.ref = weakref.ref(sd)
self.train_config = train_config
self.device = self.sd_ref().unet.device
self.image_processor: CLIPImageProcessor = None
self.input_size = 224
self.adapter_type: AdapterTypes = self.config.type
self.current_scale = 1.0
self.is_active = True
self.flag_word = "fla9wor0"
self.is_unconditional_run = False
self.is_sampling = False
self.vision_encoder: Union[PhotoMakerCLIPEncoder, CLIPVisionModelWithProjection] = None
self.fuse_module: FuseModule = None
self.lora: None = None
self.position_ids: Optional[List[int]] = None
self.num_control_images = self.config.num_control_images
self.token_mask: Optional[torch.Tensor] = None
# setup clip
self.setup_clip()
# add for dataloader
self.clip_image_processor = self.image_processor
self.clip_fusion_module: CLIPFusionModule = None
self.ilora_module: InstantLoRAModule = None
self.te: Union[T5EncoderModel, CLIPTextModel] = None
self.tokenizer: CLIPTokenizer = None
self.te_adapter: TEAdapter = None
self.te_augmenter: TEAugAdapter = None
self.vd_adapter: VisionDirectAdapter = None
self.single_value_adapter: SingleValueAdapter = None
self.redux_adapter: ReduxImageEncoder = None
self.control_lora: ControlLoraAdapter = None
self.subpixel_adapter: SubpixelAdapter = None
self.i2v_adapter: I2VAdapter = None
self.conditional_embeds: Optional[torch.Tensor] = None
self.unconditional_embeds: Optional[torch.Tensor] = None
self.cached_control_image_0_1: Optional[torch.Tensor] = None
self.setup_adapter()
if self.adapter_type == 'photo_maker':
# try to load from our name_or_path
if self.config.name_or_path is not None and self.config.name_or_path.endswith('.bin'):
self.load_state_dict(torch.load(self.config.name_or_path, map_location=self.device), strict=False)
# add the trigger word to the tokenizer
if isinstance(self.sd_ref().tokenizer, list):
for tokenizer in self.sd_ref().tokenizer:
tokenizer.add_tokens([self.flag_word], special_tokens=True)
else:
self.sd_ref().tokenizer.add_tokens([self.flag_word], special_tokens=True)
elif self.config.name_or_path is not None:
loaded_state_dict = load_custom_adapter_model(
self.config.name_or_path,
self.sd_ref().device,
dtype=self.sd_ref().dtype,
)
self.load_state_dict(loaded_state_dict, strict=False)
def setup_adapter(self):
torch_dtype = get_torch_dtype(self.sd_ref().dtype)
if self.adapter_type == 'photo_maker':
sd = self.sd_ref()
embed_dim = sd.unet_unwrapped.config['cross_attention_dim']
self.fuse_module = FuseModule(embed_dim)
elif self.adapter_type == 'clip_fusion':
sd = self.sd_ref()
embed_dim = sd.unet_unwrapped.config['cross_attention_dim']
vision_tokens = ((self.vision_encoder.config.image_size // self.vision_encoder.config.patch_size) ** 2)
if self.config.image_encoder_arch == 'clip':
vision_tokens = vision_tokens + 1
self.clip_fusion_module = CLIPFusionModule(
text_hidden_size=embed_dim,
text_tokens=77,
vision_hidden_size=self.vision_encoder.config.hidden_size,
vision_tokens=vision_tokens
)
elif self.adapter_type == 'ilora':
vision_tokens = ((self.vision_encoder.config.image_size // self.vision_encoder.config.patch_size) ** 2)
if self.config.image_encoder_arch == 'clip':
vision_tokens = vision_tokens + 1
vision_hidden_size = self.vision_encoder.config.hidden_size
if self.config.clip_layer == 'image_embeds':
vision_tokens = 1
vision_hidden_size = self.vision_encoder.config.projection_dim
self.ilora_module = InstantLoRAModule(
vision_tokens=vision_tokens,
vision_hidden_size=vision_hidden_size,
head_dim=self.config.head_dim,
num_heads=self.config.num_heads,
sd=self.sd_ref(),
config=self.config
)
elif self.adapter_type == 'text_encoder':
if self.config.text_encoder_arch == 't5':
te_kwargs = {}
# te_kwargs['load_in_4bit'] = True
# te_kwargs['load_in_8bit'] = True
te_kwargs['device_map'] = "auto"
te_is_quantized = True
self.te = T5EncoderModel.from_pretrained(
self.config.text_encoder_path,
torch_dtype=torch_dtype,
**te_kwargs
)
# self.te.to = lambda *args, **kwargs: None
self.tokenizer = T5Tokenizer.from_pretrained(self.config.text_encoder_path)
elif self.config.text_encoder_arch == 'pile-t5':
te_kwargs = {}
# te_kwargs['load_in_4bit'] = True
# te_kwargs['load_in_8bit'] = True
te_kwargs['device_map'] = "auto"
te_is_quantized = True
self.te = UMT5EncoderModel.from_pretrained(
self.config.text_encoder_path,
torch_dtype=torch_dtype,
**te_kwargs
)
# self.te.to = lambda *args, **kwargs: None
self.tokenizer = LlamaTokenizerFast.from_pretrained(self.config.text_encoder_path)
if self.tokenizer.pad_token is None:
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
elif self.config.text_encoder_arch == 'clip':
self.te = CLIPTextModel.from_pretrained(self.config.text_encoder_path).to(self.sd_ref().unet.device,
dtype=torch_dtype)
self.tokenizer = CLIPTokenizer.from_pretrained(self.config.text_encoder_path)
else:
raise ValueError(f"unknown text encoder arch: {self.config.text_encoder_arch}")
self.te_adapter = TEAdapter(self, self.sd_ref(), self.te, self.tokenizer)
elif self.adapter_type == 'llm_adapter':
kwargs = {}
if self.config.quantize_llm:
bnb_kwargs = {
'load_in_4bit': True,
'bnb_4bit_quant_type': "nf4",
'bnb_4bit_compute_dtype': torch.bfloat16
}
quantization_config = BitsAndBytesConfig(**bnb_kwargs)
kwargs['quantization_config'] = quantization_config
kwargs['torch_dtype'] = torch_dtype
self.te = AutoModel.from_pretrained(
self.config.text_encoder_path,
**kwargs
)
else:
self.te = AutoModel.from_pretrained(self.config.text_encoder_path).to(
self.sd_ref().unet.device,
dtype=torch_dtype,
)
self.te.to = lambda *args, **kwargs: None
self.te.eval()
self.tokenizer = AutoTokenizer.from_pretrained(self.config.text_encoder_path)
self.llm_adapter = LLMAdapter(
adapter=self,
sd=self.sd_ref(),
llm=self.te,
tokenizer=self.tokenizer,
num_cloned_blocks=self.config.num_cloned_blocks,
)
self.llm_adapter.to(self.device, torch_dtype)
elif self.adapter_type == 'te_augmenter':
self.te_augmenter = TEAugAdapter(self, self.sd_ref())
elif self.adapter_type == 'vision_direct':
self.vd_adapter = VisionDirectAdapter(self, self.sd_ref(), self.vision_encoder)
elif self.adapter_type == 'single_value':
self.single_value_adapter = SingleValueAdapter(self, self.sd_ref(), num_values=self.config.num_tokens)
elif self.adapter_type == 'redux':
vision_hidden_size = self.vision_encoder.config.hidden_size
self.redux_adapter = ReduxImageEncoder(vision_hidden_size, 4096, self.device, torch_dtype)
elif self.adapter_type == 'control_lora':
self.control_lora = ControlLoraAdapter(
self,
sd=self.sd_ref(),
config=self.config,
train_config=self.train_config
)
elif self.adapter_type == 'i2v':
self.i2v_adapter = I2VAdapter(
self,
sd=self.sd_ref(),
config=self.config,
train_config=self.train_config,
image_processor=self.image_processor,
vision_encoder=self.vision_encoder,
)
elif self.adapter_type == 'subpixel':
self.subpixel_adapter = SubpixelAdapter(
self,
sd=self.sd_ref(),
config=self.config,
train_config=self.train_config
)
else:
raise ValueError(f"unknown adapter type: {self.adapter_type}")
def forward(self, *args, **kwargs):
# dont think this is used
# if self.adapter_type == 'photo_maker':
# id_pixel_values = args[0]
# prompt_embeds: PromptEmbeds = args[1]
# class_tokens_mask = args[2]
#
# grads_on_image_encoder = self.config.train_image_encoder and torch.is_grad_enabled()
#
# with torch.set_grad_enabled(grads_on_image_encoder):
# id_embeds = self.vision_encoder(self, id_pixel_values, do_projection2=False)
#
# if not grads_on_image_encoder:
# id_embeds = id_embeds.detach()
#
# prompt_embeds = prompt_embeds.detach()
#
# updated_prompt_embeds = self.fuse_module(
# prompt_embeds, id_embeds, class_tokens_mask
# )
#
# return updated_prompt_embeds
# else:
raise NotImplementedError
def edit_batch_raw(self, batch: DataLoaderBatchDTO):
# happens on a raw batch before latents are created
return batch
def edit_batch_processed(self, batch: DataLoaderBatchDTO):
# happens after the latents are processed
if self.adapter_type == "i2v":
return self.i2v_adapter.edit_batch_processed(batch)
return batch
def setup_clip(self):
adapter_config = self.config
sd = self.sd_ref()
if self.config.type in ["text_encoder", "llm_adapter", "single_value", "control_lora", "subpixel"]:
return
if self.config.type == 'photo_maker':
try:
self.image_processor = CLIPImageProcessor.from_pretrained(self.config.image_encoder_path)
except EnvironmentError:
self.image_processor = CLIPImageProcessor()
if self.config.image_encoder_path is None:
self.vision_encoder = PhotoMakerCLIPEncoder()
else:
self.vision_encoder = PhotoMakerCLIPEncoder.from_pretrained(self.config.image_encoder_path)
elif self.config.image_encoder_arch == 'clip' or self.config.image_encoder_arch == 'clip+':
try:
self.image_processor = CLIPImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.image_processor = CLIPImageProcessor()
self.vision_encoder = CLIPVisionModelWithProjection.from_pretrained(
adapter_config.image_encoder_path,
ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'siglip':
from transformers import SiglipImageProcessor, SiglipVisionModel
try:
self.image_processor = SiglipImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.image_processor = SiglipImageProcessor()
self.vision_encoder = SiglipVisionModel.from_pretrained(
adapter_config.image_encoder_path,
ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'siglip2':
from transformers import SiglipImageProcessor, SiglipVisionModel
try:
self.image_processor = SiglipImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.image_processor = SiglipImageProcessor()
self.vision_encoder = SiglipVisionModel.from_pretrained(
adapter_config.image_encoder_path,
ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'pixtral':
self.image_processor = PixtralVisionImagePreprocessorCompatible(
max_image_size=self.config.pixtral_max_image_size,
)
self.vision_encoder = PixtralVisionEncoderCompatible.from_pretrained(
adapter_config.image_encoder_path,
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'vit':
try:
self.image_processor = ViTFeatureExtractor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.image_processor = ViTFeatureExtractor()
self.vision_encoder = ViTForImageClassification.from_pretrained(adapter_config.image_encoder_path).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'safe':
try:
self.image_processor = SAFEImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.image_processor = SAFEImageProcessor()
self.vision_encoder = SAFEVisionModel(
in_channels=3,
num_tokens=self.config.safe_tokens,
num_vectors=sd.unet_unwrapped.config['cross_attention_dim'],
reducer_channels=self.config.safe_reducer_channels,
channels=self.config.safe_channels,
downscale_factor=8
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'convnext':
try:
self.image_processor = ConvNextImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
print(f"could not load image processor from {adapter_config.image_encoder_path}")
self.image_processor = ConvNextImageProcessor(
size=320,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
)
self.vision_encoder = ConvNextForImageClassification.from_pretrained(
adapter_config.image_encoder_path,
use_safetensors=True,
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'vit-hybrid':
try:
self.image_processor = ViTHybridImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
print(f"could not load image processor from {adapter_config.image_encoder_path}")
self.image_processor = ViTHybridImageProcessor(
size=320,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
)
self.vision_encoder = ViTHybridForImageClassification.from_pretrained(
adapter_config.image_encoder_path,
use_safetensors=True,
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
else:
raise ValueError(f"unknown image encoder arch: {adapter_config.image_encoder_arch}")
self.input_size = self.vision_encoder.config.image_size
if self.config.quad_image: # 4x4 image
# self.clip_image_processor.config
# We do a 3x downscale of the image, so we need to adjust the input size
preprocessor_input_size = self.vision_encoder.config.image_size * 2
# update the preprocessor so images come in at the right size
if 'height' in self.image_processor.size:
self.image_processor.size['height'] = preprocessor_input_size
self.image_processor.size['width'] = preprocessor_input_size
elif hasattr(self.image_processor, 'crop_size'):
self.image_processor.size['shortest_edge'] = preprocessor_input_size
self.image_processor.crop_size['height'] = preprocessor_input_size
self.image_processor.crop_size['width'] = preprocessor_input_size
if self.config.image_encoder_arch == 'clip+':
# self.image_processor.config
# We do a 3x downscale of the image, so we need to adjust the input size
preprocessor_input_size = self.vision_encoder.config.image_size * 4
# update the preprocessor so images come in at the right size
self.image_processor.size['shortest_edge'] = preprocessor_input_size
self.image_processor.crop_size['height'] = preprocessor_input_size
self.image_processor.crop_size['width'] = preprocessor_input_size
self.preprocessor = CLIPImagePreProcessor(
input_size=preprocessor_input_size,
clip_input_size=self.vision_encoder.config.image_size,
)
if 'height' in self.image_processor.size:
self.input_size = self.image_processor.size['height']
else:
self.input_size = self.image_processor.crop_size['height']
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
strict = False
if self.config.train_only_image_encoder and 'vd_adapter' not in state_dict and 'dvadapter' not in state_dict:
# we are loading pure clip weights.
self.vision_encoder.load_state_dict(state_dict, strict=strict)
if 'lora_weights' in state_dict:
# todo add LoRA
# self.sd_ref().pipeline.load_lora_weights(state_dict["lora_weights"], adapter_name="photomaker")
# self.sd_ref().pipeline.fuse_lora()
pass
if 'clip_fusion' in state_dict:
self.clip_fusion_module.load_state_dict(state_dict['clip_fusion'], strict=strict)
if 'id_encoder' in state_dict and (self.adapter_type == 'photo_maker' or self.adapter_type == 'clip_fusion'):
self.vision_encoder.load_state_dict(state_dict['id_encoder'], strict=strict)
# check to see if the fuse weights are there
fuse_weights = {}
for k, v in state_dict['id_encoder'].items():
if k.startswith('fuse_module'):
k = k.replace('fuse_module.', '')
fuse_weights[k] = v
if len(fuse_weights) > 0:
try:
self.fuse_module.load_state_dict(fuse_weights, strict=strict)
except Exception as e:
print(e)
# force load it
print(f"force loading fuse module as it did not match")
current_state_dict = self.fuse_module.state_dict()
for k, v in fuse_weights.items():
if len(v.shape) == 1:
current_state_dict[k] = v[:current_state_dict[k].shape[0]]
elif len(v.shape) == 2:
current_state_dict[k] = v[:current_state_dict[k].shape[0], :current_state_dict[k].shape[1]]
elif len(v.shape) == 3:
current_state_dict[k] = v[:current_state_dict[k].shape[0], :current_state_dict[k].shape[1],
:current_state_dict[k].shape[2]]
elif len(v.shape) == 4:
current_state_dict[k] = v[:current_state_dict[k].shape[0], :current_state_dict[k].shape[1],
:current_state_dict[k].shape[2], :current_state_dict[k].shape[3]]
else:
raise ValueError(f"unknown shape: {v.shape}")
self.fuse_module.load_state_dict(current_state_dict, strict=strict)
if 'te_adapter' in state_dict:
self.te_adapter.load_state_dict(state_dict['te_adapter'], strict=strict)
if 'llm_adapter' in state_dict:
self.llm_adapter.load_state_dict(state_dict['llm_adapter'], strict=strict)
if 'te_augmenter' in state_dict:
self.te_augmenter.load_state_dict(state_dict['te_augmenter'], strict=strict)
if 'vd_adapter' in state_dict:
self.vd_adapter.load_state_dict(state_dict['vd_adapter'], strict=strict)
if 'dvadapter' in state_dict:
self.vd_adapter.load_state_dict(state_dict['dvadapter'], strict=False)
if 'sv_adapter' in state_dict:
self.single_value_adapter.load_state_dict(state_dict['sv_adapter'], strict=strict)
if 'vision_encoder' in state_dict:
self.vision_encoder.load_state_dict(state_dict['vision_encoder'], strict=strict)
if 'fuse_module' in state_dict:
self.fuse_module.load_state_dict(state_dict['fuse_module'], strict=strict)
if 'ilora' in state_dict:
try:
self.ilora_module.load_state_dict(state_dict['ilora'], strict=strict)
except Exception as e:
print(e)
if 'redux_up' in state_dict:
# state dict is seperated. so recombine it
new_dict = {}
for k, v in state_dict.items():
for k2, v2 in v.items():
new_dict[k + '.' + k2] = v2
self.redux_adapter.load_state_dict(new_dict, strict=True)
if self.adapter_type == 'control_lora':
# state dict is seperated. so recombine it
new_dict = {}
for k, v in state_dict.items():
for k2, v2 in v.items():
new_dict[k + '.' + k2] = v2
self.control_lora.load_weights(new_dict, strict=strict)
if self.adapter_type == 'i2v':
# state dict is seperated. so recombine it
new_dict = {}
for k, v in state_dict.items():
for k2, v2 in v.items():
new_dict[k + '.' + k2] = v2
self.i2v_adapter.load_weights(new_dict, strict=strict)
if self.adapter_type == 'subpixel':
# state dict is seperated. so recombine it
new_dict = {}
for k, v in state_dict.items():
for k2, v2 in v.items():
new_dict[k + '.' + k2] = v2
self.subpixel_adapter.load_weights(new_dict, strict=strict)
pass
def state_dict(self) -> OrderedDict:
state_dict = OrderedDict()
if self.config.train_only_image_encoder:
return self.vision_encoder.state_dict()
if self.adapter_type == 'photo_maker':
if self.config.train_image_encoder:
state_dict["id_encoder"] = self.vision_encoder.state_dict()
state_dict["fuse_module"] = self.fuse_module.state_dict()
# todo save LoRA
return state_dict
elif self.adapter_type == 'clip_fusion':
if self.config.train_image_encoder:
state_dict["vision_encoder"] = self.vision_encoder.state_dict()
state_dict["clip_fusion"] = self.clip_fusion_module.state_dict()
return state_dict
elif self.adapter_type == 'text_encoder':
state_dict["te_adapter"] = self.te_adapter.state_dict()
return state_dict
elif self.adapter_type == 'llm_adapter':
state_dict["llm_adapter"] = self.llm_adapter.state_dict()
return state_dict
elif self.adapter_type == 'te_augmenter':
if self.config.train_image_encoder:
state_dict["vision_encoder"] = self.vision_encoder.state_dict()
state_dict["te_augmenter"] = self.te_augmenter.state_dict()
return state_dict
elif self.adapter_type == 'vision_direct':
state_dict["dvadapter"] = self.vd_adapter.state_dict()
# if self.config.train_image_encoder: # always return vision encoder
state_dict["vision_encoder"] = self.vision_encoder.state_dict()
return state_dict
elif self.adapter_type == 'single_value':
state_dict["sv_adapter"] = self.single_value_adapter.state_dict()
return state_dict
elif self.adapter_type == 'ilora':
if self.config.train_image_encoder:
state_dict["vision_encoder"] = self.vision_encoder.state_dict()
state_dict["ilora"] = self.ilora_module.state_dict()
return state_dict
elif self.adapter_type == 'redux':
d = self.redux_adapter.state_dict()
for k, v in d.items():
state_dict[k] = v
return state_dict
elif self.adapter_type == 'control_lora':
d = self.control_lora.get_state_dict()
for k, v in d.items():
state_dict[k] = v
return state_dict
elif self.adapter_type == 'i2v':
d = self.i2v_adapter.get_state_dict()
for k, v in d.items():
state_dict[k] = v
return state_dict
elif self.adapter_type == 'subpixel':
d = self.subpixel_adapter.get_state_dict()
for k, v in d.items():
state_dict[k] = v
return state_dict
else:
raise NotImplementedError
def add_extra_values(self, extra_values: torch.Tensor, is_unconditional=False):
if self.adapter_type == 'single_value':
if is_unconditional:
self.unconditional_embeds = extra_values.to(self.device, get_torch_dtype(self.sd_ref().dtype))
else:
self.conditional_embeds = extra_values.to(self.device, get_torch_dtype(self.sd_ref().dtype))
def condition_noisy_latents(self, latents: torch.Tensor, batch:DataLoaderBatchDTO):
with torch.no_grad():
# todo add i2v start frame conditioning here
if self.adapter_type in ['i2v']:
return self.i2v_adapter.condition_noisy_latents(latents, batch)
elif self.adapter_type in ['control_lora']:
# inpainting input is 0-1 (bs, 4, h, w) on batch.inpaint_tensor
# 4th channel is the mask with 1 being keep area and 0 being area to inpaint.
sd: StableDiffusion = self.sd_ref()
inpainting_latent = None
if self.config.has_inpainting_input:
do_dropout = random.random() < self.config.control_image_dropout
# do random mask if we dont have one
inpaint_tensor = batch.inpaint_tensor
if inpaint_tensor is None and not do_dropout:
# generate a random one since we dont have one
# this will make random blobs, invert the blobs for now as we normanlly inpaint the alpha
inpaint_tensor = 1 - generate_random_mask(
batch_size=latents.shape[0],
height=latents.shape[2],
width=latents.shape[3],
device=latents.device,
).to(latents.device, latents.dtype)
if inpaint_tensor is not None and not do_dropout:
if inpaint_tensor.shape[1] == 4:
# get just the mask
inpainting_tensor_mask = inpaint_tensor[:, 3:4, :, :].to(latents.device, dtype=latents.dtype)
elif inpaint_tensor.shape[1] == 3:
# rgb mask. Just get one channel
inpainting_tensor_mask = inpaint_tensor[:, 0:1, :, :].to(latents.device, dtype=latents.dtype)
else:
inpainting_tensor_mask = inpaint_tensor
# # use our batch latents so we cna avoid ancoding again
inpainting_latent = batch.latents
# resize the mask to match the new encoded size
inpainting_tensor_mask = F.interpolate(inpainting_tensor_mask, size=(inpainting_latent.shape[2], inpainting_latent.shape[3]), mode='bilinear')
inpainting_tensor_mask = inpainting_tensor_mask.to(latents.device, latents.dtype)
do_mask_invert = False
if self.config.invert_inpaint_mask_chance > 0.0:
do_mask_invert = random.random() < self.config.invert_inpaint_mask_chance
if do_mask_invert:
# invert the mask
inpainting_tensor_mask = 1 - inpainting_tensor_mask
# mask out the inpainting area, it is currently 0 for inpaint area, and 1 for keep area
# we are zeroing our the latents in the inpaint area not on the pixel space.
inpainting_latent = inpainting_latent * inpainting_tensor_mask
# mask needs to be 1 for inpaint area and 0 for area to leave alone. So flip it.
inpainting_tensor_mask = 1 - inpainting_tensor_mask
# leave the mask as 0-1 and concat on channel of latents
inpainting_latent = torch.cat((inpainting_latent, inpainting_tensor_mask), dim=1)
else:
# we have iinpainting but didnt get a control. or we are doing a dropout
# the input needs to be all zeros for the latents and all 1s for the mask
inpainting_latent = torch.zeros_like(latents)
# add ones for the mask since we are technically inpainting everything
inpainting_latent = torch.cat((inpainting_latent, torch.ones_like(inpainting_latent[:, :1, :, :])), dim=1)
if self.config.num_control_images == 1:
# this is our only control
control_latent = inpainting_latent.to(latents.device, latents.dtype)
latents = torch.cat((latents, control_latent), dim=1)
return latents.detach()
if control_tensor is None:
# concat zeros onto the latents
ctrl = torch.zeros(
latents.shape[0], # bs
latents.shape[1] * self.num_control_images, # ch
latents.shape[2],
latents.shape[3],
device=latents.device,
dtype=latents.dtype
)
if inpainting_latent is not None:
# inpainting always comes first
ctrl = torch.cat((inpainting_latent, ctrl), dim=1)
latents = torch.cat((latents, ctrl), dim=1)
return latents.detach()
# if we have multiple control tensors, they come in like [bs, num_control_images, ch, h, w]
# if we have 1, it comes in like [bs, ch, h, w]
# stack out control tensors to be [bs, ch * num_control_images, h, w]
control_tensor = batch.control_tensor.to(latents.device, dtype=latents.dtype)
control_tensor_list = []
if len(control_tensor.shape) == 4:
control_tensor_list.append(control_tensor)
else:
# reshape
control_tensor = control_tensor.view(
control_tensor.shape[0],
control_tensor.shape[1] * control_tensor.shape[2],
control_tensor.shape[3],
control_tensor.shape[4]
)
control_tensor_list = control_tensor.chunk(self.num_control_images, dim=1)
control_latent_list = []
for control_tensor in control_tensor_list:
do_dropout = random.random() < self.config.control_image_dropout
if do_dropout:
# dropout with noise
control_latent_list.append(torch.zeros_like(batch.latents))
else:
# it is 0-1 need to convert to -1 to 1
control_tensor = control_tensor * 2 - 1
control_tensor = control_tensor.to(sd.vae_device_torch, dtype=sd.torch_dtype)
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
if control_tensor.shape[2] != batch.tensor.shape[2] or control_tensor.shape[3] != batch.tensor.shape[3]:
control_tensor = F.interpolate(control_tensor, size=(batch.tensor.shape[2], batch.tensor.shape[3]), mode='bicubic')
# encode it
control_latent = sd.encode_images(control_tensor).to(latents.device, latents.dtype)
control_latent_list.append(control_latent)
# stack them on the channel dimension
control_latent = torch.cat(control_latent_list, dim=1)
if inpainting_latent is not None:
# inpainting always comes first
control_latent = torch.cat((inpainting_latent, control_latent), dim=1)
# concat it onto the latents
latents = torch.cat((latents, control_latent), dim=1)
return latents.detach()
return latents
def condition_prompt(
self,
prompt: Union[List[str], str],
is_unconditional: bool = False,
):
if self.adapter_type in ['clip_fusion', 'ilora', 'vision_direct', 'redux', 'control_lora', 'subpixel', 'i2v']:
return prompt
elif self.adapter_type == 'text_encoder':
# todo allow for training
with torch.no_grad():
# encode and save the embeds
if is_unconditional:
self.unconditional_embeds = self.te_adapter.encode_text(prompt).detach()
else:
self.conditional_embeds = self.te_adapter.encode_text(prompt).detach()
elif self.adapter_type == 'llm_adapter':
# todo allow for training
with torch.no_grad():
# encode and save the embeds
if is_unconditional:
self.unconditional_embeds = self.llm_adapter.encode_text(prompt).detach()
else:
self.conditional_embeds = self.llm_adapter.encode_text(prompt).detach()
return prompt
elif self.adapter_type == 'photo_maker':
if is_unconditional:
return prompt
else:
with torch.no_grad():
was_list = isinstance(prompt, list)
if not was_list:
prompt_list = [prompt]
else:
prompt_list = prompt
new_prompt_list = []
token_mask_list = []
for prompt in prompt_list:
our_class = None
# find a class in the prompt
prompt_parts = prompt.split(' ')
prompt_parts = [p.strip().lower() for p in prompt_parts if len(p) > 0]
new_prompt_parts = []
tokened_prompt_parts = []
for idx, prompt_part in enumerate(prompt_parts):
new_prompt_parts.append(prompt_part)
tokened_prompt_parts.append(prompt_part)
if prompt_part in self.config.class_names:
our_class = prompt_part
# add the flag word
tokened_prompt_parts.append(self.flag_word)
if self.num_control_images > 1:
# add the rest
for _ in range(self.num_control_images - 1):
new_prompt_parts.extend(prompt_parts[idx + 1:])
# add the rest
tokened_prompt_parts.extend(prompt_parts[idx + 1:])
new_prompt_parts.extend(prompt_parts[idx + 1:])
break
prompt = " ".join(new_prompt_parts)
tokened_prompt = " ".join(tokened_prompt_parts)
if our_class is None:
# add the first one to the front of the prompt
tokened_prompt = self.config.class_names[0] + ' ' + self.flag_word + ' ' + prompt
our_class = self.config.class_names[0]
prompt = " ".join(
[self.config.class_names[0] for _ in range(self.num_control_images)]) + ' ' + prompt
# add the prompt to the list
new_prompt_list.append(prompt)
# tokenize them with just the first tokenizer
tokenizer = self.sd_ref().tokenizer
if isinstance(tokenizer, list):
tokenizer = tokenizer[0]
flag_token = tokenizer.convert_tokens_to_ids(self.flag_word)
tokenized_prompt = tokenizer.encode(prompt)
tokenized_tokened_prompt = tokenizer.encode(tokened_prompt)
flag_idx = tokenized_tokened_prompt.index(flag_token)
class_token = tokenized_prompt[flag_idx - 1]
boolean_mask = torch.zeros(flag_idx - 1, dtype=torch.bool)
boolean_mask = torch.cat((boolean_mask, torch.ones(self.num_control_images, dtype=torch.bool)))
boolean_mask = boolean_mask.to(self.device)
# zero pad it to 77
boolean_mask = F.pad(boolean_mask, (0, 77 - boolean_mask.shape[0]), value=False)
token_mask_list.append(boolean_mask)
self.token_mask = torch.cat(token_mask_list, dim=0).to(self.device)
prompt_list = new_prompt_list
if not was_list:
prompt = prompt_list[0]
else:
prompt = prompt_list
return prompt
else:
return prompt
def condition_encoded_embeds(
self,
tensors_0_1: torch.Tensor,
prompt_embeds: PromptEmbeds,
is_training=False,
has_been_preprocessed=False,
is_unconditional=False,
quad_count=4,
is_generating_samples=False,
) -> PromptEmbeds:
if self.adapter_type == 'text_encoder':
# replace the prompt embed with ours
if is_unconditional:
return self.unconditional_embeds.clone()
return self.conditional_embeds.clone()
if self.adapter_type == 'llm_adapter':
# replace the prompt embed with ours
if is_unconditional:
prompt_embeds.text_embeds = self.unconditional_embeds.text_embeds.clone()
prompt_embeds.attention_mask = self.unconditional_embeds.attention_mask.clone()
return prompt_embeds
prompt_embeds.text_embeds = self.conditional_embeds.text_embeds.clone()
prompt_embeds.attention_mask = self.conditional_embeds.attention_mask.clone()
return prompt_embeds
if self.adapter_type == 'ilora':
return prompt_embeds
if self.adapter_type == 'photo_maker' or self.adapter_type == 'clip_fusion' or self.adapter_type == 'redux':
if is_unconditional:
# we dont condition the negative embeds for photo maker
return prompt_embeds.clone()
with torch.no_grad():
# on training the clip image is created in the dataloader
if not has_been_preprocessed:
# tensors should be 0-1
if tensors_0_1.ndim == 3:
tensors_0_1 = tensors_0_1.unsqueeze(0)
# training tensors are 0 - 1
tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16)
# if images are out of this range throw error
if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3:
raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format(
tensors_0_1.min(), tensors_0_1.max()
))
clip_image = self.image_processor(
images=tensors_0_1,
return_tensors="pt",
do_resize=True,
do_rescale=False,
do_convert_rgb=True
).pixel_values
else:
clip_image = tensors_0_1
clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()
if self.config.quad_image:
# split the 4x4 grid and stack on batch
ci1, ci2 = clip_image.chunk(2, dim=2)
ci1, ci3 = ci1.chunk(2, dim=3)
ci2, ci4 = ci2.chunk(2, dim=3)
to_cat = []
for i, ci in enumerate([ci1, ci2, ci3, ci4]):
if i < quad_count:
to_cat.append(ci)
else:
break
clip_image = torch.cat(to_cat, dim=0).detach()
if self.adapter_type == 'photo_maker':
# Embeddings need to be (b, num_inputs, c, h, w) for now, just put 1 input image
clip_image = clip_image.unsqueeze(1)
with torch.set_grad_enabled(is_training):
if is_training and self.config.train_image_encoder:
self.vision_encoder.train()
clip_image = clip_image.requires_grad_(True)
id_embeds = self.vision_encoder(
clip_image,
do_projection2=isinstance(self.sd_ref().text_encoder, list),
)
else:
with torch.no_grad():
self.vision_encoder.eval()
id_embeds = self.vision_encoder(
clip_image, do_projection2=isinstance(self.sd_ref().text_encoder, list)
).detach()
prompt_embeds.text_embeds = self.fuse_module(
prompt_embeds.text_embeds,
id_embeds,
self.token_mask
)
return prompt_embeds
elif self.adapter_type == 'clip_fusion':
with torch.set_grad_enabled(is_training):
if is_training and self.config.train_image_encoder:
self.vision_encoder.train()
clip_image = clip_image.requires_grad_(True)
id_embeds = self.vision_encoder(
clip_image,
output_hidden_states=True,
)
else:
with torch.no_grad():
self.vision_encoder.eval()
id_embeds = self.vision_encoder(
clip_image, output_hidden_states=True
)
img_embeds = id_embeds['last_hidden_state']
if self.config.quad_image:
# get the outputs of the quat
chunks = img_embeds.chunk(quad_count, dim=0)
chunk_sum = torch.zeros_like(chunks[0])
for chunk in chunks:
chunk_sum = chunk_sum + chunk
# get the mean of them
img_embeds = chunk_sum / quad_count
if not is_training or not self.config.train_image_encoder:
img_embeds = img_embeds.detach()
prompt_embeds.text_embeds = self.clip_fusion_module(
prompt_embeds.text_embeds,
img_embeds
)
return prompt_embeds
elif self.adapter_type == 'redux':
with torch.set_grad_enabled(is_training):
if is_training and self.config.train_image_encoder:
self.vision_encoder.train()
clip_image = clip_image.requires_grad_(True)
id_embeds = self.vision_encoder(
clip_image,
output_hidden_states=True,
)
else:
with torch.no_grad():
self.vision_encoder.eval()
id_embeds = self.vision_encoder(
clip_image, output_hidden_states=True
)
img_embeds = id_embeds['last_hidden_state']
if self.config.quad_image:
# get the outputs of the quat
chunks = img_embeds.chunk(quad_count, dim=0)
chunk_sum = torch.zeros_like(chunks[0])
for chunk in chunks:
chunk_sum = chunk_sum + chunk
# get the mean of them
img_embeds = chunk_sum / quad_count
if not is_training or not self.config.train_image_encoder:
img_embeds = img_embeds.detach()
img_embeds = self.redux_adapter(img_embeds.to(self.device, get_torch_dtype(self.sd_ref().dtype)))
prompt_embeds.text_embeds = torch.cat((prompt_embeds.text_embeds, img_embeds), dim=-2)
return prompt_embeds
else:
return prompt_embeds
def get_empty_clip_image(self, batch_size: int, shape=None) -> torch.Tensor:
with torch.no_grad():
if shape is None:
shape = [batch_size, 3, self.input_size, self.input_size]
tensors_0_1 = torch.rand(shape, device=self.device)
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
# tensors_0_1 = tensors_0_1 * 0
mean = torch.tensor(self.clip_image_processor.image_mean).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
std = torch.tensor(self.clip_image_processor.image_std).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
return clip_image.detach()
def train(self, mode: bool = True):
if self.config.train_image_encoder:
self.vision_encoder.train(mode)
super().train(mode)
def trigger_pre_te(
self,
tensors_0_1: Optional[torch.Tensor]=None,
tensors_preprocessed: Optional[torch.Tensor]=None, # preprocessed by the dataloader
is_training=False,
has_been_preprocessed=False,
batch_tensor: Optional[torch.Tensor]=None,
quad_count=4,
batch_size=1,
) -> PromptEmbeds:
if tensors_0_1 is not None:
# actual 0 - 1 image
self.cached_control_image_0_1 = tensors_0_1
else:
# image has been processed through the dataloader and is prepped for vision encoder
self.cached_control_image_0_1 = None
if batch_tensor is not None and self.cached_control_image_0_1 is None:
# convert it to 0 - 1
to_cache = batch_tensor / 2 + 0.5
# videos come in (bs, num_frames, channels, height, width)
# images come in (bs, channels, height, width)
# if it is a video, just grad first frame
if len(to_cache.shape) == 5:
to_cache = to_cache[:, 0:1, :, :, :]
to_cache = to_cache.squeeze(1)
self.cached_control_image_0_1 = to_cache
if tensors_preprocessed is not None and has_been_preprocessed:
tensors_0_1 = tensors_preprocessed
# if self.adapter_type == 'ilora' or self.adapter_type == 'vision_direct' or self.adapter_type == 'te_augmenter':
if self.adapter_type in ['ilora', 'vision_direct', 'te_augmenter', 'i2v']:
skip_unconditional = self.sd_ref().is_flux
if tensors_0_1 is None:
tensors_0_1 = self.get_empty_clip_image(batch_size)
has_been_preprocessed = True
with torch.no_grad():
# on training the clip image is created in the dataloader
if not has_been_preprocessed:
# tensors should be 0-1
if tensors_0_1.ndim == 3:
tensors_0_1 = tensors_0_1.unsqueeze(0)
# training tensors are 0 - 1
tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16)
# if images are out of this range throw error
if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3:
raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format(
tensors_0_1.min(), tensors_0_1.max()
))
clip_image = self.image_processor(
images=tensors_0_1,
return_tensors="pt",
do_resize=True,
do_rescale=False,
).pixel_values
else:
clip_image = tensors_0_1
# if is pixtral
if self.config.image_encoder_arch == 'pixtral' and self.config.pixtral_random_image_size:
# get the random size
random_size = random.randint(256, self.config.pixtral_max_image_size)
# images are already sized for max size, we have to fit them to the pixtral patch size to reduce / enlarge it farther.
h, w = clip_image.shape[2], clip_image.shape[3]
current_base_size = int(math.sqrt(w * h))
ratio = current_base_size / random_size
if ratio > 1:
w = round(w / ratio)
h = round(h / ratio)
width_tokens = (w - 1) // self.image_processor.image_patch_size + 1
height_tokens = (h - 1) // self.image_processor.image_patch_size + 1
assert width_tokens > 0
assert height_tokens > 0
new_image_size = (
width_tokens * self.image_processor.image_patch_size,
height_tokens * self.image_processor.image_patch_size,
)
# resize the image
clip_image = F.interpolate(clip_image, size=new_image_size, mode='bicubic', align_corners=False)
batch_size = clip_image.shape[0]
if self.config.control_image_dropout > 0 and is_training:
clip_batch = torch.chunk(clip_image, batch_size, dim=0)
unconditional_batch = torch.chunk(self.get_empty_clip_image(batch_size, shape=clip_image.shape).to(
clip_image.device, dtype=clip_image.dtype
), batch_size, dim=0)
combine_list = []
for i in range(batch_size):
do_dropout = random.random() < self.config.control_image_dropout
if do_dropout:
# dropout with noise
combine_list.append(unconditional_batch[i])
else:
combine_list.append(clip_batch[i])
clip_image = torch.cat(combine_list, dim=0)
if self.adapter_type in ['vision_direct', 'te_augmenter', 'i2v'] and not skip_unconditional:
# add an unconditional so we can save it
unconditional = self.get_empty_clip_image(batch_size, shape=clip_image.shape).to(
clip_image.device, dtype=clip_image.dtype
)
clip_image = torch.cat([unconditional, clip_image], dim=0)
clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()
if self.config.quad_image:
# split the 4x4 grid and stack on batch
ci1, ci2 = clip_image.chunk(2, dim=2)
ci1, ci3 = ci1.chunk(2, dim=3)
ci2, ci4 = ci2.chunk(2, dim=3)
to_cat = []
for i, ci in enumerate([ci1, ci2, ci3, ci4]):
if i < quad_count:
to_cat.append(ci)
else:
break
clip_image = torch.cat(to_cat, dim=0).detach()
if self.adapter_type == 'ilora':
with torch.set_grad_enabled(is_training):
if is_training and self.config.train_image_encoder:
self.vision_encoder.train()
clip_image = clip_image.requires_grad_(True)
id_embeds = self.vision_encoder(
clip_image,
output_hidden_states=True,
)
else:
with torch.no_grad():
self.vision_encoder.eval()
id_embeds = self.vision_encoder(
clip_image, output_hidden_states=True
)
if self.config.clip_layer == 'penultimate_hidden_states':
img_embeds = id_embeds.hidden_states[-2]
elif self.config.clip_layer == 'last_hidden_state':
img_embeds = id_embeds.hidden_states[-1]
elif self.config.clip_layer == 'image_embeds':
img_embeds = id_embeds.image_embeds
else:
raise ValueError(f"unknown clip layer: {self.config.clip_layer}")
if self.config.quad_image:
# get the outputs of the quat
chunks = img_embeds.chunk(quad_count, dim=0)
chunk_sum = torch.zeros_like(chunks[0])
for chunk in chunks:
chunk_sum = chunk_sum + chunk
# get the mean of them
img_embeds = chunk_sum / quad_count
if not is_training or not self.config.train_image_encoder:
img_embeds = img_embeds.detach()
self.ilora_module(img_embeds)
# if self.adapter_type == 'vision_direct' or self.adapter_type == 'te_augmenter':
if self.adapter_type in ['vision_direct', 'te_augmenter', 'i2v']:
with torch.set_grad_enabled(is_training):
if is_training and self.config.train_image_encoder:
self.vision_encoder.train()
clip_image = clip_image.requires_grad_(True)
else:
with torch.no_grad():
self.vision_encoder.eval()
self.vision_encoder.to(self.device)
clip_output = self.vision_encoder(
clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)),
output_hidden_states=True,
)
if self.config.clip_layer == 'penultimate_hidden_states':
# they skip last layer for ip+
# https://github.com/tencent-ailab/IP-Adapter/blob/f4b6742db35ea6d81c7b829a55b0a312c7f5a677/tutorial_train_plus.py#L403C26-L403C26
clip_image_embeds = clip_output.hidden_states[-2]
elif self.config.clip_layer == 'last_hidden_state':
clip_image_embeds = clip_output.hidden_states[-1]
else:
if hasattr(clip_output, 'image_embeds'):
clip_image_embeds = clip_output.image_embeds
elif hasattr(clip_output, 'pooler_output'):
clip_image_embeds = clip_output.pooler_output
# TODO should we always norm image embeds?
# get norm embeddings
# l2_norm = torch.norm(clip_image_embeds, p=2)
# clip_image_embeds = clip_image_embeds / l2_norm
if not is_training or not self.config.train_image_encoder:
clip_image_embeds = clip_image_embeds.detach()
if self.adapter_type == 'te_augmenter':
clip_image_embeds = self.te_augmenter(clip_image_embeds)
if self.adapter_type == 'vision_direct':
clip_image_embeds = self.vd_adapter(clip_image_embeds)
# save them to the conditional and unconditional
try:
if skip_unconditional:
self.unconditional_embeds, self.conditional_embeds = None, clip_image_embeds
else:
self.unconditional_embeds, self.conditional_embeds = clip_image_embeds.chunk(2, dim=0)
except ValueError:
raise ValueError(f"could not split the clip image embeds into 2. Got shape: {clip_image_embeds.shape}")
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
if self.config.train_only_image_encoder:
yield from self.vision_encoder.parameters(recurse)
return
if self.config.type == 'photo_maker':
yield from self.fuse_module.parameters(recurse)
if self.config.train_image_encoder:
yield from self.vision_encoder.parameters(recurse)
elif self.config.type == 'clip_fusion':
yield from self.clip_fusion_module.parameters(recurse)
if self.config.train_image_encoder:
yield from self.vision_encoder.parameters(recurse)
elif self.config.type == 'ilora':
yield from self.ilora_module.parameters(recurse)
if self.config.train_image_encoder:
yield from self.vision_encoder.parameters(recurse)
elif self.config.type == 'text_encoder':
for attn_processor in self.te_adapter.adapter_modules:
yield from attn_processor.parameters(recurse)
elif self.config.type == 'llm_adapter':
yield from self.llm_adapter.parameters(recurse)
elif self.config.type == 'vision_direct':
if self.config.train_scaler:
# only yield the self.block_scaler = torch.nn.Parameter(torch.tensor([1.0] * num_modules)
yield self.vd_adapter.block_scaler
else:
for attn_processor in self.vd_adapter.adapter_modules:
yield from attn_processor.parameters(recurse)
if self.config.train_image_encoder:
yield from self.vision_encoder.parameters(recurse)
if self.vd_adapter.resampler is not None:
yield from self.vd_adapter.resampler.parameters(recurse)
if self.vd_adapter.pool is not None:
yield from self.vd_adapter.pool.parameters(recurse)
if self.vd_adapter.sparse_autoencoder is not None:
yield from self.vd_adapter.sparse_autoencoder.parameters(recurse)
elif self.config.type == 'te_augmenter':
yield from self.te_augmenter.parameters(recurse)
if self.config.train_image_encoder:
yield from self.vision_encoder.parameters(recurse)
elif self.config.type == 'single_value':
yield from self.single_value_adapter.parameters(recurse)
elif self.config.type == 'redux':
yield from self.redux_adapter.parameters(recurse)
elif self.config.type == 'control_lora':
param_list = self.control_lora.get_params()
for param in param_list:
yield param
elif self.config.type == 'i2v':
param_list = self.i2v_adapter.get_params()
for param in param_list:
yield param
elif self.config.type == 'subpixel':
param_list = self.subpixel_adapter.get_params()
for param in param_list:
yield param
else:
raise NotImplementedError
def enable_gradient_checkpointing(self):
if hasattr(self.vision_encoder, "enable_gradient_checkpointing"):
self.vision_encoder.enable_gradient_checkpointing()
elif hasattr(self.vision_encoder, 'gradient_checkpointing'):
self.vision_encoder.gradient_checkpointing = True
def get_additional_save_metadata(self) -> Dict[str, Any]:
additional = {}
if self.config.type == 'ilora':
extra = self.ilora_module.get_additional_save_metadata()
for k, v in extra.items():
additional[k] = v
additional['clip_layer'] = self.config.clip_layer
additional['image_encoder_arch'] = self.config.head_dim
return additional
def post_weight_update(self):
# do any kind of updates after the weight update
if self.config.type == 'vision_direct':
self.vd_adapter.post_weight_update()
pass