File size: 9,910 Bytes
1c72248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import numpy as np
import os
import torch.nn.functional as F
from PIL import Image
import time
import random


def generate_random_mask(
    batch_size,
    height=256,
    width=256,
    device='cuda',
    min_coverage=0.2,
    max_coverage=0.8,
    num_blobs_range=(1, 3)
):
    """
    Generate random blob masks for a batch of images.
    Fast GPU version with smooth, non-circular blob shapes.

    Args:
        batch_size (int): Number of masks to generate
        height (int): Height of the mask
        width (int): Width of the mask
        device (str): Device to run the computation on ('cuda' or 'cpu')
        min_coverage (float): Minimum percentage of the image to be covered (0-1)
        max_coverage (float): Maximum percentage of the image to be covered (0-1)
        num_blobs_range (tuple): Range of number of blobs (min, max)

    Returns:
        torch.Tensor: Binary masks with shape (batch_size, 1, height, width)
    """
    # Initialize masks on GPU
    masks = torch.zeros((batch_size, 1, height, width), device=device)

    # Pre-compute coordinate grid on GPU
    y_indices = torch.arange(height, device=device).view(
        height, 1).expand(height, width)
    x_indices = torch.arange(width, device=device).view(
        1, width).expand(height, width)

    # Prepare gaussian kernels for smoothing
    small_kernel = get_gaussian_kernel(7, 1.0).to(device)
    small_kernel = small_kernel.view(1, 1, 7, 7)

    large_kernel = get_gaussian_kernel(15, 2.5).to(device)
    large_kernel = large_kernel.view(1, 1, 15, 15)

    # Constants
    max_radius = min(height, width) // 3
    min_radius = min(height, width) // 8

    # For each mask in the batch
    for b in range(batch_size):
        # Determine number of blobs for this mask
        num_blobs = np.random.randint(
            num_blobs_range[0], num_blobs_range[1] + 1)

        # Target coverage for this mask
        target_coverage = np.random.uniform(min_coverage, max_coverage)

        # Initialize this mask
        mask = torch.zeros(1, 1, height, width, device=device)

        # Generate blobs with smoother edges
        for _ in range(num_blobs):
            # Create a low-frequency noise field first (for smooth organic shapes)
            noise_field = torch.zeros(height, width, device=device)

            # Use low-frequency sine waves to create base shape distortion
            # This creates smoother warping compared to pure random noise
            num_waves = np.random.randint(2, 5)
            for i in range(num_waves):
                freq_x = np.random.uniform(1.0, 3.0) * np.pi / width
                freq_y = np.random.uniform(1.0, 3.0) * np.pi / height
                phase_x = np.random.uniform(0, 2 * np.pi)
                phase_y = np.random.uniform(0, 2 * np.pi)
                amp = np.random.uniform(0.5, 1.0) * max_radius / (i+1.5)

                # Generate smooth wave patterns
                wave = torch.sin(x_indices * freq_x + phase_x) * \
                    torch.sin(y_indices * freq_y + phase_y) * amp
                noise_field += wave

            # Basic ellipse parameters
            center_y = np.random.randint(height//4, 3*height//4)
            center_x = np.random.randint(width//4, 3*width//4)
            radius = np.random.randint(min_radius, max_radius)

            # Squeeze and stretch the ellipse with random scaling
            scale_y = np.random.uniform(0.6, 1.4)
            scale_x = np.random.uniform(0.6, 1.4)

            # Random rotation
            theta = np.random.uniform(0, 2 * np.pi)
            cos_theta, sin_theta = np.cos(theta), np.sin(theta)

            # Calculate elliptical distance field
            y_scaled = (y_indices - center_y) * scale_y
            x_scaled = (x_indices - center_x) * scale_x

            # Apply rotation
            rotated_y = y_scaled * cos_theta - x_scaled * sin_theta
            rotated_x = y_scaled * sin_theta + x_scaled * cos_theta

            # Compute distances
            distances = torch.sqrt(rotated_y**2 + rotated_x**2)

            # Apply the smooth noise field to the distance field
            perturbed_distances = distances + noise_field

            # Create base blob
            blob = (perturbed_distances < radius).float(
            ).unsqueeze(0).unsqueeze(0)

            # Apply strong smoothing for very smooth edges
            # Double smoothing to get really organic edges
            blob = F.pad(blob, (7, 7, 7, 7), mode='reflect')
            blob = F.conv2d(blob, large_kernel, padding=0)

            # Apply threshold to get a nice shape
            rand_threshold = np.random.uniform(0.3, 0.6)
            blob = (blob > rand_threshold).float()

            # Apply second smoothing pass
            blob = F.pad(blob, (3, 3, 3, 3), mode='reflect')
            blob = F.conv2d(blob, small_kernel, padding=0)
            blob = (blob > 0.5).float()

            # Add to mask
            mask = torch.maximum(mask, blob)

        # Ensure desired coverage
        current_coverage = mask.mean().item()

        # Scale if needed to match target coverage
        if current_coverage > 0:  # Avoid division by zero
            if current_coverage < target_coverage * 0.7:  # Too small
                # Dilate mask to increase coverage
                mask = F.pad(mask, (2, 2, 2, 2), mode='reflect')
                mask = F.max_pool2d(mask, kernel_size=5, stride=1, padding=0)
            elif current_coverage > target_coverage * 1.3:  # Too large
                # Erode mask to decrease coverage
                mask = F.pad(mask, (1, 1, 1, 1), mode='reflect')
                mask = F.avg_pool2d(mask, kernel_size=3, stride=1, padding=0)
                mask = (mask > 0.7).float()

        # Final smooth and threshold
        mask = F.pad(mask, (3, 3, 3, 3), mode='reflect')
        mask = F.conv2d(mask, small_kernel, padding=0)
        mask = (mask > 0.5).float()

        # Add to batch
        masks[b] = mask

    return masks


def get_gaussian_kernel(kernel_size=5, sigma=1.0):
    """
    Returns a 2D Gaussian kernel.
    """
    # Create 1D kernels
    x = torch.linspace(-sigma * 2, sigma * 2, kernel_size)
    x = x.view(1, -1).repeat(kernel_size, 1)
    y = x.transpose(0, 1)

    # 2D Gaussian
    gaussian = torch.exp(-(x**2 + y**2) / (2 * sigma**2))
    gaussian /= gaussian.sum()

    return gaussian


def save_masks_as_images(masks, suffix="", output_dir="output"):
    """
    Save generated masks as RGB JPG images using PIL.
    """
    os.makedirs(output_dir, exist_ok=True)

    batch_size = masks.shape[0]
    for i in range(batch_size):
        # Convert mask to numpy array
        mask = masks[i, 0].cpu().numpy()

        # Scale to 0-255 range and convert to uint8
        mask_255 = (mask * 255).astype(np.uint8)

        # Create RGB image (white mask on black background)
        rgb_mask = np.stack([mask_255, mask_255, mask_255], axis=2)

        # Convert to PIL Image and save
        img = Image.fromarray(rgb_mask)
        img.save(os.path.join(output_dir, f"mask_{i:03d}{suffix}.jpg"), quality=95)


def random_dialate_mask(mask, max_percent=0.05):
    """
    Randomly dialates a binary mask with a kernel of random size.
    
    Args:
        mask (torch.Tensor): Input mask of shape [batch_size, channels, height, width]
        max_percent (float): Maximum kernel size as a percentage of the mask size
        
    Returns:
        torch.Tensor: Dialated mask with the same shape as input
    """
    
    size = mask.shape[-1]
    max_size = int(size * max_percent)
    
    # Handle case where max_size is too small
    if max_size < 3:
        max_size = 3
    
    batch_chunks = torch.chunk(mask, mask.shape[0], dim=0)
    out_chunks = []
    
    for i in range(len(batch_chunks)):
        chunk = batch_chunks[i]
        
        # Ensure kernel size is odd for proper padding
        kernel_size = np.random.randint(1, max_size)
        
        # If kernel_size is less than 2, keep the original mask
        if kernel_size < 2:
            out_chunks.append(chunk)
            continue
            
        # Make sure kernel size is odd
        if kernel_size % 2 == 0:
            kernel_size += 1
        
        # Create normalized dilation kernel
        kernel = torch.ones((1, 1, kernel_size, kernel_size), device=mask.device) / (kernel_size * kernel_size)
        
        # Pad the mask for convolution
        padding = kernel_size // 2
        padded_mask = F.pad(chunk, (padding, padding, padding, padding), mode='constant', value=0)
        
        # Apply convolution
        dilated = F.conv2d(padded_mask, kernel)
        
        # Random threshold for varied dilation effect
        threshold = np.random.uniform(0.2, 0.8)
        
        # Apply threshold
        dilated = (dilated > threshold).float()
        
        out_chunks.append(dilated)
    
    return torch.cat(out_chunks, dim=0)


if __name__ == "__main__":
    # Parameters
    batch_size = 20
    height = 256
    width = 256
    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    print(f"Generating {batch_size} random blob masks on {device}...")

    for i in range(5):
        # time it
        start = time.time()
        masks = generate_random_mask(
            batch_size=batch_size,
            height=height,
            width=width,
            device=device,
            min_coverage=0.2,
            max_coverage=0.8,
            num_blobs_range=(1, 3)
        )
        dialation = random_dialate_mask(masks)
        print(f"Generated {batch_size} masks with shape: {masks.shape}")
        end = time.time()
        # print time in milliseconds
        print(f"Time taken: {(end - start)*1000:.2f} ms")

    print(f"Saving masks to 'output' directory...")
    save_masks_as_images(masks)
    save_masks_as_images(dialation, suffix="_dilated" )

    print("Done!")