File size: 6,189 Bytes
1c72248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from diffusers import AutoencoderKL
from typing import Optional, Union
import torch
import torch.nn as nn
import numpy as np
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKLOutput
from diffusers.models.autoencoders.vae import DecoderOutput


class PixelMixer(nn.Module):
    def __init__(self, in_channels, downscale_factor):
        super(PixelMixer, self).__init__()
        self.downscale_factor = downscale_factor
        self.in_channels = in_channels

    def forward(self, x):
        latent = self.encode(x)
        out = self.decode(latent)
        return out

    def encode(self, x):
        return torch.nn.PixelUnshuffle(self.downscale_factor)(x)

    def decode(self, x):
        return torch.nn.PixelShuffle(self.downscale_factor)(x)


# for reference

# none of this matters with llvae, but we need to match the interface (latent_channels might matter)

class Config:
    in_channels = 3
    out_channels = 3
    down_block_types = ('1', '1',
                        '1', '1')
    up_block_types = ('1', '1',
                      '1', '1')
    block_out_channels = (1, 1, 1, 1)
    latent_channels = 192  # usually 4
    norm_num_groups = 32
    sample_size = 512
    # scaling_factor = 1
    # shift_factor = 0
    scaling_factor = 1.8
    shift_factor = -0.123
    # VAE
    # - Mean: -0.12306906282901764
    # - Std:  0.556016206741333
    # Normalization parameters:
    # - Shift factor: -0.12306906282901764
    # - Scaling factor: 1.7985087266803625

    def __getitem__(cls, x):
        return getattr(cls, x)


class AutoencoderPixelMixer(nn.Module):

    def __init__(self, in_channels=3, downscale_factor=8):
        super().__init__()
        self.mixer = PixelMixer(in_channels, downscale_factor)
        self._dtype = torch.float32
        self._device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.config = Config()
        
        if downscale_factor == 8:
            # we go by len of block out channels in code, so simulate it
            self.config.block_out_channels = (1, 1, 1, 1)
            self.config.latent_channels = 192
        
        elif downscale_factor == 16:
            # we go by len of block out channels in code, so simulate it
            self.config.block_out_channels = (1, 1, 1, 1, 1)
            self.config.latent_channels = 768
        else:
            raise ValueError(
                f"downscale_factor {downscale_factor} not supported")

    @property
    def dtype(self):
        return self._dtype

    @dtype.setter
    def dtype(self, value):
        self._dtype = value

    @property
    def device(self):
        return self._device

    @device.setter
    def device(self, value):
        self._device = value

    # mimic to from torch
    def to(self, *args, **kwargs):
        # pull out dtype and device if they exist
        if 'dtype' in kwargs:
            self._dtype = kwargs['dtype']
        if 'device' in kwargs:
            self._device = kwargs['device']
        return super().to(*args, **kwargs)

    def enable_xformers_memory_efficient_attention(self):
        pass

    # @apply_forward_hook
    def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:

        h = self.mixer.encode(x)

        # moments = self.quant_conv(h)
        # posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (h,)

        class FakeDist:
            def __init__(self, x):
                self._sample = x

            def sample(self):
                return self._sample

        return AutoencoderKLOutput(latent_dist=FakeDist(h))

    def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        dec = self.mixer.decode(z)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    # @apply_forward_hook
    def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        decoded = self._decode(z).sample

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    def _set_gradient_checkpointing(self, module, value=False):
        pass

    def enable_tiling(self, use_tiling: bool = True):
        pass

    def disable_tiling(self):
        pass

    def enable_slicing(self):
        pass

    def disable_slicing(self):
        pass

    def set_use_memory_efficient_attention_xformers(self, value: bool = True):
        pass

    def forward(
            self,
            sample: torch.FloatTensor,
            sample_posterior: bool = False,
            return_dict: bool = True,
            generator: Optional[torch.Generator] = None,
    ) -> Union[DecoderOutput, torch.FloatTensor]:

        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)


# test it
if __name__ == '__main__':
    import os
    from PIL import Image
    import torchvision.transforms as transforms
    user_path = os.path.expanduser('~')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    dtype = torch.float32

    input_path = os.path.join(user_path, "Pictures/test/test.jpg")
    output_path = os.path.join(user_path, "Pictures/test/test.jpg")
    img = Image.open(input_path)
    img_tensor = transforms.ToTensor()(img)
    img_tensor = img_tensor.unsqueeze(0).to(device=device, dtype=dtype)
    print("input_shape: ", list(img_tensor.shape))
    vae = PixelMixer(in_channels=3, downscale_factor=8)
    latent = vae.encode(img_tensor)
    print("latent_shape: ", list(latent.shape))
    out_tensor = vae.decode(latent)
    print("out_shape: ", list(out_tensor.shape))

    mse_loss = nn.MSELoss()
    mse = mse_loss(img_tensor, out_tensor)
    print("roundtrip_loss: ", mse.item())
    out_img = transforms.ToPILImage()(out_tensor.squeeze(0))
    out_img.save(output_path)