File size: 12,537 Bytes
1c72248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from collections import OrderedDict
import math
from typing import List
import torch
from toolkit.optimizers.optimizer_utils import Auto8bitTensor, copy_stochastic, stochastic_grad_accummulation
from optimum.quanto import QBytesTensor
import random


class Automagic(torch.optim.Optimizer):
    def __init__(
        self,
        params,
        lr=None,
        min_lr=1e-7,
        max_lr=1e-3,
        lr_pump_scale=1.1,
        lr_dump_scale=0.85,
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        decay_rate=-0.8,
        weight_decay=0.0,
        do_paramiter_swapping=False,
        paramiter_swapping_factor=0.1,
    ):
        self.lr = lr
        self.min_lr = min_lr
        self.max_lr = max_lr
        self.lr_pump_scale = lr_pump_scale
        self.lr_dump_scale = lr_dump_scale

        defaults = {
            "lr": lr,
            "eps": eps,
            "clip_threshold": clip_threshold,
            "decay_rate": decay_rate,
            "weight_decay": weight_decay,
        }
        super().__init__(params, defaults)

        self.base_lrs: List[float] = [
            lr for group in self.param_groups
        ]

        self.is_stochastic_rounding_accumulation = False

        # setup stochastic grad accum hooks
        for group in self.param_groups:
            for param in group['params']:
                if param.requires_grad and param.dtype != torch.float32:
                    self.is_stochastic_rounding_accumulation = True
                    param.register_post_accumulate_grad_hook(
                        stochastic_grad_accummulation
                    )

        self.do_paramiter_swapping = do_paramiter_swapping
        self.paramiter_swapping_factor = paramiter_swapping_factor
        self._total_paramiter_size = 0
        # count total paramiters
        for group in self.param_groups:
            for param in group['params']:
                self._total_paramiter_size += torch.numel(param)
        # pretty print total paramiters with comma seperation
        print(f"Total training paramiters: {self._total_paramiter_size:,}")

        # needs to be enabled to count paramiters
        if self.do_paramiter_swapping:
            self.enable_paramiter_swapping(self.paramiter_swapping_factor)

    def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1):
        self.do_paramiter_swapping = True
        self.paramiter_swapping_factor = paramiter_swapping_factor
        # call it an initial time
        self.swap_paramiters()

    def swap_paramiters(self):
        all_params = []
        # deactivate all paramiters
        for group in self.param_groups:
            for param in group['params']:
                param.requires_grad_(False)
                # remove any grad
                param.grad = None
                all_params.append(param)
        # shuffle all paramiters
        random.shuffle(all_params)

        # keep activating paramiters until we are going to go over the target paramiters
        target_paramiters = int(
            self._total_paramiter_size * self.paramiter_swapping_factor)
        total_paramiters = 0
        for param in all_params:
            total_paramiters += torch.numel(param)
            if total_paramiters >= target_paramiters:
                break
            else:
                param.requires_grad_(True)

    @staticmethod
    def _get_lr(param_group, param_state):
        if 'avg_lr' in param_state:
            lr = param_state["avg_lr"]
        else:
            lr = 0.0
        return lr

    def _get_group_lr(self, group):
        group_lrs = []
        for p in group["params"]:
            group_lrs.append(self._get_lr(group, self.state[p]))
        # return avg
        if len(group_lrs) == 0:
            return self.lr
        return sum(group_lrs) / len(group_lrs)

    @staticmethod
    def _rms(tensor):
        return tensor.norm(2) / (tensor.numel() ** 0.5)

    @staticmethod
    def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
        # copy from fairseq's adafactor implementation:
        # https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505
        r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-
                    1, keepdim=True)).rsqrt_().unsqueeze(-1)
        c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
        return torch.mul(r_factor, c_factor)

    def step_hook(self):
        if not self.is_stochastic_rounding_accumulation:
            return
        # copy over stochastically rounded grads
        for group in self.param_groups:
            for param in group['params']:
                if param.requires_grad and hasattr(param, "_accum_grad"):
                    param.grad = param._accum_grad
                    del param._accum_grad

    # adafactor manages its own lr
    def get_learning_rates(self):

        lrs = [
            self._get_group_lr(group)
            for group in self.param_groups
        ]
        if len(lrs) == 0:
            lrs = self.base_lrs  # if called before stepping
        return lrs

    def get_avg_learning_rate(self):
        lrs = self.get_learning_rates()
        return sum(lrs) / len(lrs)

    @torch.no_grad()
    def step(self, closure=None):
        """
        Performs a single optimization step

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        self.step_hook()
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None or not p.requires_grad:
                    continue

                grad = p.grad
                if grad.dtype != torch.float32:
                    grad = grad.to(torch.float32)
                if grad.is_sparse:
                    raise RuntimeError(
                        "Automagic does not support sparse gradients.")

                state = self.state[p]
                grad_shape = grad.shape

                factored = len(grad_shape) >= 2
                # State Initialization
                if len(state) == 0:
                    self.initialize_state(p)
                else:
                    if factored:
                        state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(
                            grad)
                        state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(
                            grad)
                    else:
                        state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)

                p_data_fp32 = p

                if isinstance(p_data_fp32, QBytesTensor):
                    p_data_fp32 = p_data_fp32.dequantize()
                if p.dtype != torch.float32:
                    p_data_fp32 = p_data_fp32.clone().float()

                state["step"] += 1
                state["RMS"] = self._rms(p_data_fp32)
                # lr = self._get_lr(group, state)

                beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
                eps = group["eps"]
                if isinstance(eps, tuple) or isinstance(eps, list):
                    eps = eps[0]
                update = (grad**2) + eps
                if factored:
                    exp_avg_sq_row = state["exp_avg_sq_row"]
                    exp_avg_sq_col = state["exp_avg_sq_col"]

                    exp_avg_sq_row.mul_(beta2t).add_(
                        update.mean(dim=-1), alpha=(1.0 - beta2t))
                    exp_avg_sq_col.mul_(beta2t).add_(
                        update.mean(dim=-2), alpha=(1.0 - beta2t))

                    # Approximation of exponential moving average of square of gradient
                    update = self._approx_sq_grad(
                        exp_avg_sq_row, exp_avg_sq_col)
                    update.mul_(grad)
                else:
                    exp_avg_sq = state["exp_avg_sq"]

                    exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
                    update = exp_avg_sq.rsqrt().mul_(grad)

                update.div_(
                    (self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))

                # calculate new lr mask. if the updated param is going in same direction, increase lr, else decrease
                # update the lr mask. self.lr_momentum is < 1.0. If a paramiter is positive and increasing (or negative and decreasing), increase lr,
                # for that single paramiter. If a paramiter is negative and increasing or positive and decreasing, decrease lr for that single paramiter.
                # to decrease lr, multiple by self.lr_momentum, to increase lr, divide by self.lr_momentum.

                # not doing it this way anymore
                # update.mul_(lr)

                # Get signs of current last update and updates
                last_polarity = state['last_polarity']
                current_polarity = (update > 0).to(torch.bool)
                sign_agreement = torch.where(
                    last_polarity == current_polarity, 1, -1)
                state['last_polarity'] = current_polarity

                lr_mask = state['lr_mask'].to(torch.float32)

                # Update learning rate mask based on sign agreement
                new_lr = torch.where(
                    sign_agreement > 0,
                    lr_mask * self.lr_pump_scale,  # Increase lr
                    lr_mask * self.lr_dump_scale  # Decrease lr
                )

                # Clip learning rates to bounds
                new_lr = torch.clamp(
                    new_lr,
                    min=self.min_lr,
                    max=self.max_lr
                )

                # Apply the learning rate mask to the update
                update.mul_(new_lr)

                state['lr_mask'] = Auto8bitTensor(new_lr)
                state['avg_lr'] = torch.mean(new_lr)

                if group["weight_decay"] != 0:
                    p_data_fp32.add_(
                        p_data_fp32, alpha=(-group["weight_decay"] * new_lr))

                p_data_fp32.add_(-update)

                if p.dtype != torch.float32:
                    # apply stochastic rounding
                    copy_stochastic(p, p_data_fp32)

        return loss
    
    def initialize_state(self, p):
        state = self.state[p]
        state["step"] = 0

        # store the lr mask
        if 'lr_mask' not in state:
            state['lr_mask'] = Auto8bitTensor(torch.ones(
                p.shape).to(p.device, dtype=torch.float32) * self.lr
            )
        state['avg_lr'] = torch.mean(
            state['lr_mask'].to(torch.float32))
        if 'last_polarity' not in state:
            state['last_polarity'] = torch.zeros(
                p.shape, dtype=torch.bool, device=p.device)
        
        factored = len(p.shape) >= 2
        if factored:
            state["exp_avg_sq_row"] = torch.zeros(
                p.shape[:-1]).to(p)
            state["exp_avg_sq_col"] = torch.zeros(
                p.shape[:-2] + p.shape[-1:]).to(p)
        else:
            state["exp_avg_sq"] = torch.zeros_like(p)

        state["RMS"] = 0
    
    # override the state_dict to save the lr_mask
    def state_dict(self, *args, **kwargs):
        orig_state_dict = super().state_dict(*args, **kwargs)
        # convert the state to quantized tensor to scale and quantized
        new_sace_state = {}
        for p, state in orig_state_dict['state'].items():
            save_state = {k: v for k, v in state.items() if k != 'lr_mask'}
            save_state['lr_mask'] = state['lr_mask'].state_dict()
            new_sace_state[p] = save_state
            
        orig_state_dict['state'] = new_sace_state
        
        return orig_state_dict
    
    def load_state_dict(self, state_dict, strict=True):
        # load the lr_mask from the state_dict
        # dont load state dict for now. Has a bug. Need to fix it.
        return
        idx = 0
        for group in self.param_groups:
            for p in group['params']:
                self.initialize_state(p)
                state = self.state[p]
                m = state_dict['state'][idx]['lr_mask']
                sd_mask = m['quantized'].to(m['orig_dtype']) * m['scale']
                state['lr_mask'] = Auto8bitTensor(sd_mask)
                del state_dict['state'][idx]['lr_mask']
                idx += 1
        super().load_state_dict(state_dict)