Spaces:
Paused
Paused
File size: 12,537 Bytes
1c72248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
from collections import OrderedDict
import math
from typing import List
import torch
from toolkit.optimizers.optimizer_utils import Auto8bitTensor, copy_stochastic, stochastic_grad_accummulation
from optimum.quanto import QBytesTensor
import random
class Automagic(torch.optim.Optimizer):
def __init__(
self,
params,
lr=None,
min_lr=1e-7,
max_lr=1e-3,
lr_pump_scale=1.1,
lr_dump_scale=0.85,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
weight_decay=0.0,
do_paramiter_swapping=False,
paramiter_swapping_factor=0.1,
):
self.lr = lr
self.min_lr = min_lr
self.max_lr = max_lr
self.lr_pump_scale = lr_pump_scale
self.lr_dump_scale = lr_dump_scale
defaults = {
"lr": lr,
"eps": eps,
"clip_threshold": clip_threshold,
"decay_rate": decay_rate,
"weight_decay": weight_decay,
}
super().__init__(params, defaults)
self.base_lrs: List[float] = [
lr for group in self.param_groups
]
self.is_stochastic_rounding_accumulation = False
# setup stochastic grad accum hooks
for group in self.param_groups:
for param in group['params']:
if param.requires_grad and param.dtype != torch.float32:
self.is_stochastic_rounding_accumulation = True
param.register_post_accumulate_grad_hook(
stochastic_grad_accummulation
)
self.do_paramiter_swapping = do_paramiter_swapping
self.paramiter_swapping_factor = paramiter_swapping_factor
self._total_paramiter_size = 0
# count total paramiters
for group in self.param_groups:
for param in group['params']:
self._total_paramiter_size += torch.numel(param)
# pretty print total paramiters with comma seperation
print(f"Total training paramiters: {self._total_paramiter_size:,}")
# needs to be enabled to count paramiters
if self.do_paramiter_swapping:
self.enable_paramiter_swapping(self.paramiter_swapping_factor)
def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1):
self.do_paramiter_swapping = True
self.paramiter_swapping_factor = paramiter_swapping_factor
# call it an initial time
self.swap_paramiters()
def swap_paramiters(self):
all_params = []
# deactivate all paramiters
for group in self.param_groups:
for param in group['params']:
param.requires_grad_(False)
# remove any grad
param.grad = None
all_params.append(param)
# shuffle all paramiters
random.shuffle(all_params)
# keep activating paramiters until we are going to go over the target paramiters
target_paramiters = int(
self._total_paramiter_size * self.paramiter_swapping_factor)
total_paramiters = 0
for param in all_params:
total_paramiters += torch.numel(param)
if total_paramiters >= target_paramiters:
break
else:
param.requires_grad_(True)
@staticmethod
def _get_lr(param_group, param_state):
if 'avg_lr' in param_state:
lr = param_state["avg_lr"]
else:
lr = 0.0
return lr
def _get_group_lr(self, group):
group_lrs = []
for p in group["params"]:
group_lrs.append(self._get_lr(group, self.state[p]))
# return avg
if len(group_lrs) == 0:
return self.lr
return sum(group_lrs) / len(group_lrs)
@staticmethod
def _rms(tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
@staticmethod
def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
# copy from fairseq's adafactor implementation:
# https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-
1, keepdim=True)).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
def step_hook(self):
if not self.is_stochastic_rounding_accumulation:
return
# copy over stochastically rounded grads
for group in self.param_groups:
for param in group['params']:
if param.requires_grad and hasattr(param, "_accum_grad"):
param.grad = param._accum_grad
del param._accum_grad
# adafactor manages its own lr
def get_learning_rates(self):
lrs = [
self._get_group_lr(group)
for group in self.param_groups
]
if len(lrs) == 0:
lrs = self.base_lrs # if called before stepping
return lrs
def get_avg_learning_rate(self):
lrs = self.get_learning_rates()
return sum(lrs) / len(lrs)
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self.step_hook()
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None or not p.requires_grad:
continue
grad = p.grad
if grad.dtype != torch.float32:
grad = grad.to(torch.float32)
if grad.is_sparse:
raise RuntimeError(
"Automagic does not support sparse gradients.")
state = self.state[p]
grad_shape = grad.shape
factored = len(grad_shape) >= 2
# State Initialization
if len(state) == 0:
self.initialize_state(p)
else:
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(
grad)
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(
grad)
else:
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
p_data_fp32 = p
if isinstance(p_data_fp32, QBytesTensor):
p_data_fp32 = p_data_fp32.dequantize()
if p.dtype != torch.float32:
p_data_fp32 = p_data_fp32.clone().float()
state["step"] += 1
state["RMS"] = self._rms(p_data_fp32)
# lr = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
eps = group["eps"]
if isinstance(eps, tuple) or isinstance(eps, list):
eps = eps[0]
update = (grad**2) + eps
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(beta2t).add_(
update.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(
update.mean(dim=-2), alpha=(1.0 - beta2t))
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(
exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_(
(self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
# calculate new lr mask. if the updated param is going in same direction, increase lr, else decrease
# update the lr mask. self.lr_momentum is < 1.0. If a paramiter is positive and increasing (or negative and decreasing), increase lr,
# for that single paramiter. If a paramiter is negative and increasing or positive and decreasing, decrease lr for that single paramiter.
# to decrease lr, multiple by self.lr_momentum, to increase lr, divide by self.lr_momentum.
# not doing it this way anymore
# update.mul_(lr)
# Get signs of current last update and updates
last_polarity = state['last_polarity']
current_polarity = (update > 0).to(torch.bool)
sign_agreement = torch.where(
last_polarity == current_polarity, 1, -1)
state['last_polarity'] = current_polarity
lr_mask = state['lr_mask'].to(torch.float32)
# Update learning rate mask based on sign agreement
new_lr = torch.where(
sign_agreement > 0,
lr_mask * self.lr_pump_scale, # Increase lr
lr_mask * self.lr_dump_scale # Decrease lr
)
# Clip learning rates to bounds
new_lr = torch.clamp(
new_lr,
min=self.min_lr,
max=self.max_lr
)
# Apply the learning rate mask to the update
update.mul_(new_lr)
state['lr_mask'] = Auto8bitTensor(new_lr)
state['avg_lr'] = torch.mean(new_lr)
if group["weight_decay"] != 0:
p_data_fp32.add_(
p_data_fp32, alpha=(-group["weight_decay"] * new_lr))
p_data_fp32.add_(-update)
if p.dtype != torch.float32:
# apply stochastic rounding
copy_stochastic(p, p_data_fp32)
return loss
def initialize_state(self, p):
state = self.state[p]
state["step"] = 0
# store the lr mask
if 'lr_mask' not in state:
state['lr_mask'] = Auto8bitTensor(torch.ones(
p.shape).to(p.device, dtype=torch.float32) * self.lr
)
state['avg_lr'] = torch.mean(
state['lr_mask'].to(torch.float32))
if 'last_polarity' not in state:
state['last_polarity'] = torch.zeros(
p.shape, dtype=torch.bool, device=p.device)
factored = len(p.shape) >= 2
if factored:
state["exp_avg_sq_row"] = torch.zeros(
p.shape[:-1]).to(p)
state["exp_avg_sq_col"] = torch.zeros(
p.shape[:-2] + p.shape[-1:]).to(p)
else:
state["exp_avg_sq"] = torch.zeros_like(p)
state["RMS"] = 0
# override the state_dict to save the lr_mask
def state_dict(self, *args, **kwargs):
orig_state_dict = super().state_dict(*args, **kwargs)
# convert the state to quantized tensor to scale and quantized
new_sace_state = {}
for p, state in orig_state_dict['state'].items():
save_state = {k: v for k, v in state.items() if k != 'lr_mask'}
save_state['lr_mask'] = state['lr_mask'].state_dict()
new_sace_state[p] = save_state
orig_state_dict['state'] = new_sace_state
return orig_state_dict
def load_state_dict(self, state_dict, strict=True):
# load the lr_mask from the state_dict
# dont load state dict for now. Has a bug. Need to fix it.
return
idx = 0
for group in self.param_groups:
for p in group['params']:
self.initialize_state(p)
state = self.state[p]
m = state_dict['state'][idx]['lr_mask']
sd_mask = m['quantized'].to(m['orig_dtype']) * m['scale']
state['lr_mask'] = Auto8bitTensor(sd_mask)
del state_dict['state'][idx]['lr_mask']
idx += 1
super().load_state_dict(state_dict)
|