File size: 24,606 Bytes
1c72248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
from functools import partial
import inspect
import weakref
import torch
from typing import TYPE_CHECKING, Any, Dict, Optional, Union
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.lora_special import LoRASpecialNetwork
from diffusers import WanTransformer3DModel
from transformers import SiglipImageProcessor, SiglipVisionModel, CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.models.attention_processor import Attention
from diffusers.models.transformers.transformer_wan import WanImageEmbedding, WanTimeTextImageEmbedding
from toolkit.util.shuffle import shuffle_tensor_along_axis
import torch.nn.functional as F

if TYPE_CHECKING:
    from toolkit.models.base_model import BaseModel
    from toolkit.config_modules import AdapterConfig, TrainConfig, ModelConfig
    from toolkit.custom_adapter import CustomAdapter

    
class FrameEmbedder(torch.nn.Module):
    def __init__(
        self,
        adapter: 'I2VAdapter',
        orig_layer: torch.nn.Conv3d,
        in_channels=20, # wan is 16 normally, and 36 with i2v so 20 new channels
    ):
        super().__init__()
        # goes through a conv patch embedding first and is then flattened
        # hidden_states = self.patch_embedding(hidden_states)
        # hidden_states = hidden_states.flatten(2).transpose(1, 2)
        
        inner_dim = orig_layer.out_channels
        patch_size = adapter.sd_ref().model.config.patch_size
        
        self.patch_embedding = torch.nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)

        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.orig_layer_ref: weakref.ref = weakref.ref(orig_layer)

    @classmethod
    def from_model(
        cls,
        model: WanTransformer3DModel,
        adapter: 'I2VAdapter',
    ):
        if model.__class__.__name__ == 'WanTransformer3DModel':
            new_channels = 20 # wan is 16 normally, and 36 with i2v so 20 new channels

            orig_patch_embedding: torch.nn.Conv3d = model.patch_embedding
            img_embedder = cls(
                adapter,
                orig_layer=orig_patch_embedding,
                in_channels=new_channels,
            )

            # hijack the forward method
            orig_patch_embedding._orig_i2v_adapter_forward = orig_patch_embedding.forward
            orig_patch_embedding.forward = img_embedder.forward

            # update the config of the transformer, only needed when merged in
            # model.config.in_channels = model.config.in_channels + new_channels
            # model.config["in_channels"] = model.config.in_channels + new_channels

            return img_embedder
        else:
            raise ValueError("Model not supported")

    @property
    def is_active(self):
        return self.adapter_ref().is_active

    def forward(self, x):
        if not self.is_active:
            # make sure lora is not active
            if self.adapter_ref().control_lora is not None:
                self.adapter_ref().control_lora.is_active = False
            
            if x.shape[1] > self.orig_layer_ref().in_channels:
                # we have i2v, so we need to remove the extra channels
                x = x[:, :self.orig_layer_ref().in_channels, :, :, :]
            return self.orig_layer_ref()._orig_i2v_adapter_forward(x)

        # make sure lora is active
        if self.adapter_ref().control_lora is not None:
            self.adapter_ref().control_lora.is_active = True
            
        # x is arranged channels cat(orig_input = 16, temporal_conditioning_mask = 4, encoded_first_frame=16)
        # (16 + 4 + 16) = 36 channels
        # (batch_size, 36, num_frames, latent_height, latent_width)

        orig_device = x.device
        orig_dtype = x.dtype
        
        orig_in = x[:, :16, :, :, :]
        orig_out = self.orig_layer_ref()._orig_i2v_adapter_forward(orig_in)
        
        # remove original stuff
        x = x[:, 16:, :, :, :]

        x = x.to(self.patch_embedding.weight.device, dtype=self.patch_embedding.weight.dtype)

        x = self.patch_embedding(x)
        
        x = x.to(orig_device, dtype=orig_dtype)
        
        # add the original out
        x = x + orig_out
        return x


def deactivatable_forward(
    self: 'Attention',
    *args,
    **kwargs
):
    if self._attn_hog_ref() is not None and self._attn_hog_ref().is_active:
        self.added_kv_proj_dim = None
        self.add_k_proj = self._add_k_proj
        self.add_v_proj = self._add_v_proj
        self.norm_added_q = self._norm_added_q
        self.norm_added_k = self._norm_added_k
    else:
        self.added_kv_proj_dim = self._attn_hog_ref().added_kv_proj_dim
        self.add_k_proj = None
        self.add_v_proj = None
        self.norm_added_q = None
        self.norm_added_k = None
    return self._orig_forward(*args, **kwargs)


class AttentionHog(torch.nn.Module):
    def __init__(
        self,
        added_kv_proj_dim: int,
        adapter: 'I2VAdapter',
        attn_layer: Attention,
        model: 'WanTransformer3DModel',
    ):
        super().__init__()

        # To prevent circular import.
        from diffusers.models.normalization import FP32LayerNorm, LpNorm, RMSNorm

        self.added_kv_proj_dim = added_kv_proj_dim
        self.attn_layer_ref: weakref.ref = weakref.ref(attn_layer)
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.model_ref: weakref.ref = weakref.ref(model)

        qk_norm = model.config.qk_norm
        
        # layers
        self.add_k_proj = torch.nn.Linear(
            added_kv_proj_dim,
            attn_layer.inner_kv_dim,
            bias=attn_layer.added_proj_bias
        )
        self.add_k_proj.weight.data = self.add_k_proj.weight.data * 0.001
        self.add_v_proj = torch.nn.Linear(
            added_kv_proj_dim,
            attn_layer.inner_kv_dim,
            bias=attn_layer.added_proj_bias
        )
        self.add_v_proj.weight.data = self.add_v_proj.weight.data * 0.001

        # do qk norm. It isnt stored in the class, but we can infer it from the attn layer
        self.norm_added_q = None
        self.norm_added_k = None

        if attn_layer.norm_q is not None:
            eps: float = 1e-5
            if qk_norm == "layer_norm":
                self.norm_added_q = torch.nn.LayerNorm(
                    attn_layer.norm_q.normalized_shape, eps=eps, elementwise_affine=attn_layer.norm_q.elementwise_affine)
                self.norm_added_k = torch.nn.LayerNorm(
                    attn_layer.norm_k.normalized_shape, eps=eps, elementwise_affine=attn_layer.norm_k.elementwise_affine)
            elif qk_norm == "fp32_layer_norm":
                self.norm_added_q = FP32LayerNorm(
                    attn_layer.norm_q.normalized_shape, elementwise_affine=False, bias=False, eps=eps)
                self.norm_added_k = FP32LayerNorm(
                    attn_layer.norm_k.normalized_shape, elementwise_affine=False, bias=False, eps=eps)
            elif qk_norm == "rms_norm":
                self.norm_added_q = RMSNorm(attn_layer.norm_q.dim, eps=eps)
                self.norm_added_k = RMSNorm(attn_layer.norm_k.dim, eps=eps)
            elif qk_norm == "rms_norm_across_heads":
                # Wanx applies qk norm across all heads
                self.norm_added_q = RMSNorm(attn_layer.norm_q.dim, eps=eps)
                self.norm_added_k = RMSNorm(attn_layer.norm_k.dim, eps=eps)
            else:
                raise ValueError(
                    f"unknown qk_norm: {qk_norm}. Should be one of `None,'layer_norm','fp32_layer_norm','rms_norm'`"
                )

        # add these to the attn later in a way they can be deactivated
        attn_layer._add_k_proj = self.add_k_proj
        attn_layer._add_v_proj = self.add_v_proj
        attn_layer._norm_added_q = self.norm_added_q
        attn_layer._norm_added_k = self.norm_added_k

        # make it deactivateable
        attn_layer._attn_hog_ref = weakref.ref(self)
        attn_layer._orig_forward = attn_layer.forward
        attn_layer.forward = partial(deactivatable_forward, attn_layer)

    def forward(self, *args, **kwargs):
        if not self.adapter_ref().is_active:
            return self.attn_module(*args, **kwargs)

        # TODO implement this
        raise NotImplementedError("Attention hog not implemented")

    def is_active(self):
        return self.adapter_ref().is_active


def new_wan_forward(
    self: WanTransformer3DModel,
    hidden_states: torch.Tensor,
    timestep: torch.LongTensor,
    encoder_hidden_states: torch.Tensor,
    encoder_hidden_states_image: Optional[torch.Tensor] = None,
    return_dict: bool = True,
    attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
    # prevent circular import
    from toolkit.models.wan21.wan_utils import add_first_frame_conditioning
    adapter:'I2VAdapter' = self._i2v_adapter_ref()
    
    if adapter.is_active:
        # activate the condition embedder
        self.condition_embedder.image_embedder = adapter.image_embedder
        
        # for wan they are putting the image emcoder embeds on the unconditional
        # this needs to be fixed as that wont work. For now, we will will use the embeds we have in order
        # we cache an conditional and an unconditional embed. On sampling, it samples conditional first,
        # then unconditional. So we just need to keep track of which one we are using. This is a horrible hack
        # TODO find a not stupid way to do this. 
        
        if adapter.adapter_ref().is_sampling:
            if not hasattr(self, '_do_unconditional'):
                # set it to true so we alternate to false immediatly
                self._do_unconditional = True
            
            # alternate it
            self._do_unconditional = not self._do_unconditional
            if self._do_unconditional:
                # slightly reduce strength of conditional for the unconditional
                # encoder_hidden_states_image = adapter.adapter_ref().conditional_embeds * 0.5
                # shuffle the embedding tokens so we still have all the information, but it is scrambled
                # this will prevent things like color from being cfg overweights, but still sharpen content. 
                
                encoder_hidden_states_image = shuffle_tensor_along_axis(
                    adapter.adapter_ref().conditional_embeds, 
                    axis=1
                )
                # encoder_hidden_states_image = adapter.adapter_ref().unconditional_embeds
            else:
                # use the conditional
                encoder_hidden_states_image = adapter.adapter_ref().conditional_embeds
        else:
            # doing a normal training run, always use conditional embeds
            encoder_hidden_states_image = adapter.adapter_ref().conditional_embeds
        
        # add the first frame conditioning
        if adapter.frame_embedder is not None:
            with torch.no_grad():
                # add the first frame conditioning
                conditioning_frame = adapter.adapter_ref().cached_control_image_0_1
                if conditioning_frame is None:
                    raise ValueError("No conditioning frame found")

                # make it -1 to 1
                conditioning_frame = (conditioning_frame * 2) - 1
                conditioning_frame = conditioning_frame.to(
                    hidden_states.device, dtype=hidden_states.dtype
                )
                    
                # if doing a full denoise, the latent input may be full channels here, only get first 16
                if hidden_states.shape[1] > 16:
                    hidden_states = hidden_states[:, :16, :, :, :]
                
                
                hidden_states = add_first_frame_conditioning(
                    latent_model_input=hidden_states,
                    first_frame=conditioning_frame,
                    vae=adapter.adapter_ref().sd_ref().vae,
                )
    else:
        # not active deactivate the condition embedder
        self.condition_embedder.image_embedder = None
    
    return self._orig_i2v_adapter_forward(
        hidden_states=hidden_states,
        timestep=timestep,
        encoder_hidden_states=encoder_hidden_states,
        encoder_hidden_states_image=encoder_hidden_states_image,
        return_dict=return_dict,
        attention_kwargs=attention_kwargs,
    )
    

class I2VAdapter(torch.nn.Module):
    def __init__(
        self,
        adapter: 'CustomAdapter',
        sd: 'BaseModel',
        config: 'AdapterConfig',
        train_config: 'TrainConfig',
        image_processor: Union[SiglipImageProcessor, CLIPImageProcessor],
        vision_encoder: Union[SiglipVisionModel, CLIPVisionModelWithProjection],
    ):
        super().__init__()
        # avoid circular import
        from toolkit.models.wan21.wan_attn import WanAttnProcessor2_0
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.sd_ref = weakref.ref(sd)
        self.model_config: ModelConfig = sd.model_config
        self.network_config = config.lora_config
        self.train_config = train_config
        self.config = config
        self.device_torch = sd.device_torch
        self.control_lora = None
        self.image_processor_ref: weakref.ref = weakref.ref(image_processor)
        self.vision_encoder_ref: weakref.ref = weakref.ref(vision_encoder)
        
        ve_img_size = vision_encoder.config.image_size
        ve_patch_size = vision_encoder.config.patch_size
        num_patches = (ve_img_size // ve_patch_size) ** 2
        num_vision_tokens = num_patches
        
        # siglip does not have a class token
        if not vision_encoder.__class__.__name__.lower().startswith("siglip"):
            num_vision_tokens = num_patches + 1

        model_class = sd.model.__class__.__name__

        if self.network_config is not None:

            network_kwargs = {} if self.network_config.network_kwargs is None else self.network_config.network_kwargs
            if hasattr(sd, 'target_lora_modules'):
                network_kwargs['target_lin_modules'] = sd.target_lora_modules

            if 'ignore_if_contains' not in network_kwargs:
                network_kwargs['ignore_if_contains'] = []

            network_kwargs['ignore_if_contains'] += [
                'add_k_proj',
                'add_v_proj',
                'norm_added_q',
                'norm_added_k',
            ]
            if model_class == 'WanTransformer3DModel':
                # always ignore patch_embedding
                network_kwargs['ignore_if_contains'].append('patch_embedding')

            self.control_lora = LoRASpecialNetwork(
                text_encoder=sd.text_encoder,
                unet=sd.unet,
                lora_dim=self.network_config.linear,
                multiplier=1.0,
                alpha=self.network_config.linear_alpha,
                train_unet=self.train_config.train_unet,
                train_text_encoder=self.train_config.train_text_encoder,
                conv_lora_dim=self.network_config.conv,
                conv_alpha=self.network_config.conv_alpha,
                is_sdxl=self.model_config.is_xl or self.model_config.is_ssd,
                is_v2=self.model_config.is_v2,
                is_v3=self.model_config.is_v3,
                is_pixart=self.model_config.is_pixart,
                is_auraflow=self.model_config.is_auraflow,
                is_flux=self.model_config.is_flux,
                is_lumina2=self.model_config.is_lumina2,
                is_ssd=self.model_config.is_ssd,
                is_vega=self.model_config.is_vega,
                dropout=self.network_config.dropout,
                use_text_encoder_1=self.model_config.use_text_encoder_1,
                use_text_encoder_2=self.model_config.use_text_encoder_2,
                use_bias=False,
                is_lorm=False,
                network_config=self.network_config,
                network_type=self.network_config.type,
                transformer_only=self.network_config.transformer_only,
                is_transformer=sd.is_transformer,
                base_model=sd,
                **network_kwargs
            )
            self.control_lora.force_to(self.device_torch, dtype=torch.float32)
            self.control_lora._update_torch_multiplier()
            self.control_lora.apply_to(
                sd.text_encoder,
                sd.unet,
                self.train_config.train_text_encoder,
                self.train_config.train_unet
            )
            self.control_lora.can_merge_in = False
            self.control_lora.prepare_grad_etc(sd.text_encoder, sd.unet)
            if self.train_config.gradient_checkpointing:
                self.control_lora.enable_gradient_checkpointing()

        self.frame_embedder: FrameEmbedder = None
        if self.config.i2v_do_start_frame:
            self.frame_embedder = FrameEmbedder.from_model(
                sd.unet,
                self
            )
            self.frame_embedder.to(self.device_torch)

        # hijack the blocks so we can inject our vision encoder
        attn_hog_list = []
        if model_class == 'WanTransformer3DModel':
            added_kv_proj_dim = sd.model.config.num_attention_heads * sd.model.config.attention_head_dim
            # update the model so it can accept the new input
            # wan has i2v with clip-h for i2v, additional k v attn that directly takes
            # in the penultimate_hidden_states from the vision encoder
            # the kv is on blocks[0].attn2
            sd.model.config.added_kv_proj_dim = added_kv_proj_dim
            sd.model.config['added_kv_proj_dim'] = added_kv_proj_dim

            transformer: WanTransformer3DModel = sd.model
            for block in transformer.blocks:
                block.attn2.added_kv_proj_dim = added_kv_proj_dim
                attn_module = AttentionHog(
                    added_kv_proj_dim,
                    self,
                    block.attn2,
                    transformer
                )
                # set the attn function to ours that handles custom number of vision tokens
                block.attn2.set_processor(WanAttnProcessor2_0(num_vision_tokens))
                
                attn_hog_list.append(attn_module)
        else:
            raise ValueError(f"Model {model_class} not supported")

        self.attn_hog_list = torch.nn.ModuleList(attn_hog_list)
        self.attn_hog_list.to(self.device_torch)
        
        inner_dim = sd.model.config.num_attention_heads * sd.model.config.attention_head_dim
        image_embed_dim = vision_encoder.config.hidden_size
        self.image_embedder = WanImageEmbedding(image_embed_dim, inner_dim)
        
        # override the forward method
        if model_class == 'WanTransformer3DModel':
            self.sd_ref().model._orig_i2v_adapter_forward = self.sd_ref().model.forward
            self.sd_ref().model.forward = partial(
                new_wan_forward,
                self.sd_ref().model
            )
            
            # add the wan image embedder
            self.sd_ref().model.condition_embedder._image_embedder = self.image_embedder
            self.sd_ref().model.condition_embedder._image_embedder.to(self.device_torch)
        
        self.sd_ref().model._i2v_adapter_ref = weakref.ref(self)

    def get_params(self):
        if self.control_lora is not None:
            config = {
                'text_encoder_lr': self.train_config.lr,
                'unet_lr': self.train_config.lr,
            }
            sig = inspect.signature(self.control_lora.prepare_optimizer_params)
            if 'default_lr' in sig.parameters:
                config['default_lr'] = self.train_config.lr
            if 'learning_rate' in sig.parameters:
                config['learning_rate'] = self.train_config.lr
            params_net = self.control_lora.prepare_optimizer_params(
                **config
            )

            # we want only tensors here
            params = []
            for p in params_net:
                if isinstance(p, dict):
                    params += p["params"]
                elif isinstance(p, torch.Tensor):
                    params.append(p)
                elif isinstance(p, list):
                    params += p
        else:
            params = []

        if self.frame_embedder is not None:
            # make sure the embedder is float32
            self.frame_embedder.to(torch.float32)
            params += list(self.frame_embedder.parameters())

        # add the attn hogs
        for attn_hog in self.attn_hog_list:
            params += list(attn_hog.parameters())
        
        # add the image embedder
        if self.image_embedder is not None:
            params += list(self.image_embedder.parameters())
        return params

    def load_weights(self, state_dict, strict=True):
        lora_sd = {}
        attn_hog_sd = {}
        frame_embedder_sd = {}
        image_embedder_sd = {}
        
        for key, value in state_dict.items():
            if "frame_embedder" in key:
                new_key = key.replace("frame_embedder.", "")
                frame_embedder_sd[new_key] = value
            elif "attn_hog" in key:
                new_key = key.replace("attn_hog.", "")
                attn_hog_sd[new_key] = value
            elif "image_embedder" in key:
                new_key = key.replace("image_embedder.", "")
                image_embedder_sd[new_key] = value
            else:
                lora_sd[key] = value

        # todo process state dict before loading
        if self.control_lora is not None:
            self.control_lora.load_weights(lora_sd)
        if self.frame_embedder is not None:
            self.frame_embedder.load_state_dict(
                frame_embedder_sd, strict=False)
        self.attn_hog_list.load_state_dict(
            attn_hog_sd, strict=False)
        self.image_embedder.load_state_dict(
            image_embedder_sd, strict=False)

    def get_state_dict(self):
        if self.control_lora is not None:
            lora_sd = self.control_lora.get_state_dict(dtype=torch.float32)
        else:
            lora_sd = {}

        if self.frame_embedder is not None:
            frame_embedder_sd = self.frame_embedder.state_dict()
            for key, value in frame_embedder_sd.items():
                lora_sd[f"frame_embedder.{key}"] = value

        # add the attn hogs
        attn_hog_sd = self.attn_hog_list.state_dict()
        for key, value in attn_hog_sd.items():
            lora_sd[f"attn_hog.{key}"] = value
        
        # add the image embedder
        image_embedder_sd = self.image_embedder.state_dict()
        for key, value in image_embedder_sd.items():
            lora_sd[f"image_embedder.{key}"] = value
            
        return lora_sd
    
    def condition_noisy_latents(self, latents: torch.Tensor, batch:DataLoaderBatchDTO):
        # todo handle start frame
        return latents
    
    def edit_batch_processed(self, batch: DataLoaderBatchDTO):
        with torch.no_grad():
            # we will alway get a clip image frame, if one is not passed, use image
            # or if video, pull from the first frame
            # edit the batch to pull the first frame out of a video if we have it
            # videos come in (bs, num_frames, channels, height, width)
            tensor = batch.tensor
            if batch.clip_image_tensor is None:
                if len(tensor.shape) == 5:
                    # we have a video
                    first_frames = tensor[:, 0, :, :, :].clone()
                else:
                    # we have a single image
                    first_frames = tensor.clone()
                    
                # it is -1 to 1, change it to 0 to 1
                first_frames = (first_frames + 1) / 2
                    
                # clip image tensors are preprocessed. 
                tensors_0_1 = first_frames.to(dtype=torch.float16)
                clip_out = self.adapter_ref().clip_image_processor(
                    images=tensors_0_1,
                    return_tensors="pt",
                    do_resize=True,
                    do_rescale=False,
                ).pixel_values
                
                batch.clip_image_tensor = clip_out.to(self.device_torch)
        return batch

    @property
    def is_active(self):
        return self.adapter_ref().is_active