File size: 67,419 Bytes
1c72248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
import math
import torch
import sys

from PIL import Image
from torch.nn import Parameter
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, CLIPTextModel, \
    CLIPTokenizer, T5Tokenizer

from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.models.clip_fusion import CLIPFusionModule
from toolkit.models.clip_pre_processor import CLIPImagePreProcessor
from toolkit.models.control_lora_adapter import ControlLoraAdapter
from toolkit.models.i2v_adapter import I2VAdapter
from toolkit.models.subpixel_adapter import SubpixelAdapter
from toolkit.models.ilora import InstantLoRAModule
from toolkit.models.single_value_adapter import SingleValueAdapter
from toolkit.models.te_adapter import TEAdapter
from toolkit.models.te_aug_adapter import TEAugAdapter
from toolkit.models.vd_adapter import VisionDirectAdapter
from toolkit.models.redux import ReduxImageEncoder
from toolkit.photomaker import PhotoMakerIDEncoder, FuseModule, PhotoMakerCLIPEncoder
from toolkit.saving import load_ip_adapter_model, load_custom_adapter_model
from toolkit.train_tools import get_torch_dtype
from toolkit.models.pixtral_vision import PixtralVisionEncoderCompatible, PixtralVisionImagePreprocessorCompatible
import random
from toolkit.util.mask import generate_random_mask
from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional, Dict
from collections import OrderedDict
from toolkit.config_modules import AdapterConfig, AdapterTypes, TrainConfig
from toolkit.prompt_utils import PromptEmbeds
import weakref

if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion

from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPVisionModel,
    AutoImageProcessor,
    ConvNextModel,
    ConvNextForImageClassification,
    ConvNextImageProcessor,
    UMT5EncoderModel, LlamaTokenizerFast, AutoModel, AutoTokenizer, BitsAndBytesConfig
)
from toolkit.models.size_agnostic_feature_encoder import SAFEImageProcessor, SAFEVisionModel

from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification

from transformers import ViTFeatureExtractor, ViTForImageClassification

from toolkit.models.llm_adapter import LLMAdapter

import torch.nn.functional as F


class CustomAdapter(torch.nn.Module):
    def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig', train_config: 'TrainConfig'):
        super().__init__()
        self.config = adapter_config
        self.sd_ref: weakref.ref = weakref.ref(sd)
        self.train_config = train_config
        self.device = self.sd_ref().unet.device
        self.image_processor: CLIPImageProcessor = None
        self.input_size = 224
        self.adapter_type: AdapterTypes = self.config.type
        self.current_scale = 1.0
        self.is_active = True
        self.flag_word = "fla9wor0"
        self.is_unconditional_run = False
        self.is_sampling = False

        self.vision_encoder: Union[PhotoMakerCLIPEncoder, CLIPVisionModelWithProjection] = None

        self.fuse_module: FuseModule = None

        self.lora: None = None

        self.position_ids: Optional[List[int]] = None

        self.num_control_images = self.config.num_control_images
        self.token_mask: Optional[torch.Tensor] = None

        # setup clip
        self.setup_clip()
        # add for dataloader
        self.clip_image_processor = self.image_processor

        self.clip_fusion_module: CLIPFusionModule = None
        self.ilora_module: InstantLoRAModule = None

        self.te: Union[T5EncoderModel, CLIPTextModel] = None
        self.tokenizer: CLIPTokenizer = None
        self.te_adapter: TEAdapter = None
        self.te_augmenter: TEAugAdapter = None
        self.vd_adapter: VisionDirectAdapter = None
        self.single_value_adapter: SingleValueAdapter = None
        self.redux_adapter: ReduxImageEncoder = None
        self.control_lora: ControlLoraAdapter = None
        self.subpixel_adapter: SubpixelAdapter = None
        self.i2v_adapter: I2VAdapter = None
        
        self.conditional_embeds: Optional[torch.Tensor] = None
        self.unconditional_embeds: Optional[torch.Tensor] = None
        
        self.cached_control_image_0_1: Optional[torch.Tensor] = None

        self.setup_adapter()

        if self.adapter_type == 'photo_maker':
            # try to load from our name_or_path
            if self.config.name_or_path is not None and self.config.name_or_path.endswith('.bin'):
                self.load_state_dict(torch.load(self.config.name_or_path, map_location=self.device), strict=False)
            # add the trigger word to the tokenizer
            if isinstance(self.sd_ref().tokenizer, list):
                for tokenizer in self.sd_ref().tokenizer:
                    tokenizer.add_tokens([self.flag_word], special_tokens=True)
            else:
                self.sd_ref().tokenizer.add_tokens([self.flag_word], special_tokens=True)
        elif self.config.name_or_path is not None:
            loaded_state_dict = load_custom_adapter_model(
                self.config.name_or_path,
                self.sd_ref().device,
                dtype=self.sd_ref().dtype,
            )
            self.load_state_dict(loaded_state_dict, strict=False)

    def setup_adapter(self):
        torch_dtype = get_torch_dtype(self.sd_ref().dtype)
        if self.adapter_type == 'photo_maker':
            sd = self.sd_ref()
            embed_dim = sd.unet_unwrapped.config['cross_attention_dim']
            self.fuse_module = FuseModule(embed_dim)
        elif self.adapter_type == 'clip_fusion':
            sd = self.sd_ref()
            embed_dim = sd.unet_unwrapped.config['cross_attention_dim']

            vision_tokens = ((self.vision_encoder.config.image_size // self.vision_encoder.config.patch_size) ** 2)
            if self.config.image_encoder_arch == 'clip':
                vision_tokens = vision_tokens + 1
            self.clip_fusion_module = CLIPFusionModule(
                text_hidden_size=embed_dim,
                text_tokens=77,
                vision_hidden_size=self.vision_encoder.config.hidden_size,
                vision_tokens=vision_tokens
            )
        elif self.adapter_type == 'ilora':
            vision_tokens = ((self.vision_encoder.config.image_size // self.vision_encoder.config.patch_size) ** 2)
            if self.config.image_encoder_arch == 'clip':
                vision_tokens = vision_tokens + 1

            vision_hidden_size = self.vision_encoder.config.hidden_size

            if self.config.clip_layer == 'image_embeds':
                vision_tokens = 1
                vision_hidden_size = self.vision_encoder.config.projection_dim

            self.ilora_module = InstantLoRAModule(
                vision_tokens=vision_tokens,
                vision_hidden_size=vision_hidden_size,
                head_dim=self.config.head_dim,
                num_heads=self.config.num_heads,
                sd=self.sd_ref(),
                config=self.config
            )
        elif self.adapter_type == 'text_encoder':
            if self.config.text_encoder_arch == 't5':
                te_kwargs = {}
                # te_kwargs['load_in_4bit'] = True
                # te_kwargs['load_in_8bit'] = True
                te_kwargs['device_map'] = "auto"
                te_is_quantized = True

                self.te = T5EncoderModel.from_pretrained(
                    self.config.text_encoder_path,
                    torch_dtype=torch_dtype,
                    **te_kwargs
                )

                # self.te.to = lambda *args, **kwargs: None
                self.tokenizer = T5Tokenizer.from_pretrained(self.config.text_encoder_path)
            elif self.config.text_encoder_arch == 'pile-t5':
                te_kwargs = {}
                # te_kwargs['load_in_4bit'] = True
                # te_kwargs['load_in_8bit'] = True
                te_kwargs['device_map'] = "auto"
                te_is_quantized = True

                self.te = UMT5EncoderModel.from_pretrained(
                    self.config.text_encoder_path,
                    torch_dtype=torch_dtype,
                    **te_kwargs
                )

                # self.te.to = lambda *args, **kwargs: None
                self.tokenizer = LlamaTokenizerFast.from_pretrained(self.config.text_encoder_path)
                if self.tokenizer.pad_token is None:
                    self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
            elif self.config.text_encoder_arch == 'clip':
                self.te = CLIPTextModel.from_pretrained(self.config.text_encoder_path).to(self.sd_ref().unet.device,
                                                                                          dtype=torch_dtype)
                self.tokenizer = CLIPTokenizer.from_pretrained(self.config.text_encoder_path)
            else:
                raise ValueError(f"unknown text encoder arch: {self.config.text_encoder_arch}")

            self.te_adapter = TEAdapter(self, self.sd_ref(), self.te, self.tokenizer)
        elif self.adapter_type == 'llm_adapter':
            kwargs = {}
            if self.config.quantize_llm:
                bnb_kwargs = {
                    'load_in_4bit': True,
                    'bnb_4bit_quant_type': "nf4",
                    'bnb_4bit_compute_dtype': torch.bfloat16
                }
                quantization_config = BitsAndBytesConfig(**bnb_kwargs)
                kwargs['quantization_config'] = quantization_config
                kwargs['torch_dtype'] = torch_dtype
                self.te = AutoModel.from_pretrained(
                    self.config.text_encoder_path,
                    **kwargs
                )
            else:
                self.te = AutoModel.from_pretrained(self.config.text_encoder_path).to(
                    self.sd_ref().unet.device, 
                    dtype=torch_dtype,
                )
            self.te.to = lambda *args, **kwargs: None
            self.te.eval()
            self.tokenizer = AutoTokenizer.from_pretrained(self.config.text_encoder_path)
            self.llm_adapter = LLMAdapter(
                adapter=self, 
                sd=self.sd_ref(),
                llm=self.te,
                tokenizer=self.tokenizer,
                num_cloned_blocks=self.config.num_cloned_blocks,
            )
            self.llm_adapter.to(self.device, torch_dtype)
        elif self.adapter_type == 'te_augmenter':
            self.te_augmenter = TEAugAdapter(self, self.sd_ref())
        elif self.adapter_type == 'vision_direct':
            self.vd_adapter = VisionDirectAdapter(self, self.sd_ref(), self.vision_encoder)
        elif self.adapter_type == 'single_value':
            self.single_value_adapter = SingleValueAdapter(self, self.sd_ref(), num_values=self.config.num_tokens)
        elif self.adapter_type == 'redux':
            vision_hidden_size = self.vision_encoder.config.hidden_size
            self.redux_adapter = ReduxImageEncoder(vision_hidden_size, 4096, self.device, torch_dtype)
        elif self.adapter_type == 'control_lora':
            self.control_lora = ControlLoraAdapter(
                self,
                sd=self.sd_ref(),
                config=self.config,
                train_config=self.train_config
            )
        elif self.adapter_type == 'i2v':
            self.i2v_adapter = I2VAdapter(
                self,
                sd=self.sd_ref(),
                config=self.config,
                train_config=self.train_config,
                image_processor=self.image_processor,
                vision_encoder=self.vision_encoder,
            )
        elif self.adapter_type == 'subpixel':
            self.subpixel_adapter = SubpixelAdapter(
                self,
                sd=self.sd_ref(),
                config=self.config,
                train_config=self.train_config
            )
        else:
            raise ValueError(f"unknown adapter type: {self.adapter_type}")

    def forward(self, *args, **kwargs):
        # dont think this is used
        # if self.adapter_type == 'photo_maker':
        #     id_pixel_values = args[0]
        #     prompt_embeds: PromptEmbeds = args[1]
        #     class_tokens_mask = args[2]
        #
        #     grads_on_image_encoder = self.config.train_image_encoder and torch.is_grad_enabled()
        #
        #     with torch.set_grad_enabled(grads_on_image_encoder):
        #         id_embeds = self.vision_encoder(self, id_pixel_values, do_projection2=False)
        #
        #     if not grads_on_image_encoder:
        #         id_embeds = id_embeds.detach()
        #
        #     prompt_embeds = prompt_embeds.detach()
        #
        #     updated_prompt_embeds = self.fuse_module(
        #         prompt_embeds, id_embeds, class_tokens_mask
        #     )
        #
        #     return updated_prompt_embeds
        # else:
        raise NotImplementedError

    def edit_batch_raw(self, batch: DataLoaderBatchDTO):
        # happens on a raw batch before latents are created
        return batch
    
    def edit_batch_processed(self, batch: DataLoaderBatchDTO):
        # happens after the latents are processed
        if self.adapter_type == "i2v":
            return self.i2v_adapter.edit_batch_processed(batch)
        return batch

    def setup_clip(self):
        adapter_config = self.config
        sd = self.sd_ref()
        if self.config.type in ["text_encoder", "llm_adapter", "single_value", "control_lora", "subpixel"]:
            return
        if self.config.type == 'photo_maker':
            try:
                self.image_processor = CLIPImageProcessor.from_pretrained(self.config.image_encoder_path)
            except EnvironmentError:
                self.image_processor = CLIPImageProcessor()
            if self.config.image_encoder_path is None:
                self.vision_encoder = PhotoMakerCLIPEncoder()
            else:
                self.vision_encoder = PhotoMakerCLIPEncoder.from_pretrained(self.config.image_encoder_path)
        elif self.config.image_encoder_arch == 'clip' or self.config.image_encoder_arch == 'clip+':
            try:
                self.image_processor = CLIPImageProcessor.from_pretrained(adapter_config.image_encoder_path)
            except EnvironmentError:
                self.image_processor = CLIPImageProcessor()
            self.vision_encoder = CLIPVisionModelWithProjection.from_pretrained(
                adapter_config.image_encoder_path,
                ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
        elif self.config.image_encoder_arch == 'siglip':
            from transformers import SiglipImageProcessor, SiglipVisionModel
            try:
                self.image_processor = SiglipImageProcessor.from_pretrained(adapter_config.image_encoder_path)
            except EnvironmentError:
                self.image_processor = SiglipImageProcessor()
            self.vision_encoder = SiglipVisionModel.from_pretrained(
                adapter_config.image_encoder_path,
                ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
        elif self.config.image_encoder_arch == 'siglip2':
            from transformers import SiglipImageProcessor, SiglipVisionModel
            try:
                self.image_processor = SiglipImageProcessor.from_pretrained(adapter_config.image_encoder_path)
            except EnvironmentError:
                self.image_processor = SiglipImageProcessor()
            self.vision_encoder = SiglipVisionModel.from_pretrained(
                adapter_config.image_encoder_path,
                ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
        elif self.config.image_encoder_arch == 'pixtral':
            self.image_processor = PixtralVisionImagePreprocessorCompatible(
                max_image_size=self.config.pixtral_max_image_size,
            )
            self.vision_encoder = PixtralVisionEncoderCompatible.from_pretrained(
                adapter_config.image_encoder_path,
            ).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
        elif self.config.image_encoder_arch == 'vit':
            try:
                self.image_processor = ViTFeatureExtractor.from_pretrained(adapter_config.image_encoder_path)
            except EnvironmentError:
                self.image_processor = ViTFeatureExtractor()
            self.vision_encoder = ViTForImageClassification.from_pretrained(adapter_config.image_encoder_path).to(
                self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
        elif self.config.image_encoder_arch == 'safe':
            try:
                self.image_processor = SAFEImageProcessor.from_pretrained(adapter_config.image_encoder_path)
            except EnvironmentError:
                self.image_processor = SAFEImageProcessor()
            self.vision_encoder = SAFEVisionModel(
                in_channels=3,
                num_tokens=self.config.safe_tokens,
                num_vectors=sd.unet_unwrapped.config['cross_attention_dim'],
                reducer_channels=self.config.safe_reducer_channels,
                channels=self.config.safe_channels,
                downscale_factor=8
            ).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
        elif self.config.image_encoder_arch == 'convnext':
            try:
                self.image_processor = ConvNextImageProcessor.from_pretrained(adapter_config.image_encoder_path)
            except EnvironmentError:
                print(f"could not load image processor from {adapter_config.image_encoder_path}")
                self.image_processor = ConvNextImageProcessor(
                    size=320,
                    image_mean=[0.48145466, 0.4578275, 0.40821073],
                    image_std=[0.26862954, 0.26130258, 0.27577711],
                )
            self.vision_encoder = ConvNextForImageClassification.from_pretrained(
                adapter_config.image_encoder_path,
                use_safetensors=True,
            ).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
        elif self.config.image_encoder_arch == 'vit-hybrid':
            try:
                self.image_processor = ViTHybridImageProcessor.from_pretrained(adapter_config.image_encoder_path)
            except EnvironmentError:
                print(f"could not load image processor from {adapter_config.image_encoder_path}")
                self.image_processor = ViTHybridImageProcessor(
                    size=320,
                    image_mean=[0.48145466, 0.4578275, 0.40821073],
                    image_std=[0.26862954, 0.26130258, 0.27577711],
                )
            self.vision_encoder = ViTHybridForImageClassification.from_pretrained(
                adapter_config.image_encoder_path,
                use_safetensors=True,
            ).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
        else:
            raise ValueError(f"unknown image encoder arch: {adapter_config.image_encoder_arch}")

        self.input_size = self.vision_encoder.config.image_size

        if self.config.quad_image:  # 4x4 image
            # self.clip_image_processor.config
            # We do a 3x downscale of the image, so we need to adjust the input size
            preprocessor_input_size = self.vision_encoder.config.image_size * 2

            # update the preprocessor so images come in at the right size
            if 'height' in self.image_processor.size:
                self.image_processor.size['height'] = preprocessor_input_size
                self.image_processor.size['width'] = preprocessor_input_size
            elif hasattr(self.image_processor, 'crop_size'):
                self.image_processor.size['shortest_edge'] = preprocessor_input_size
                self.image_processor.crop_size['height'] = preprocessor_input_size
                self.image_processor.crop_size['width'] = preprocessor_input_size

        if self.config.image_encoder_arch == 'clip+':
            # self.image_processor.config
            # We do a 3x downscale of the image, so we need to adjust the input size
            preprocessor_input_size = self.vision_encoder.config.image_size * 4

            # update the preprocessor so images come in at the right size
            self.image_processor.size['shortest_edge'] = preprocessor_input_size
            self.image_processor.crop_size['height'] = preprocessor_input_size
            self.image_processor.crop_size['width'] = preprocessor_input_size

            self.preprocessor = CLIPImagePreProcessor(
                input_size=preprocessor_input_size,
                clip_input_size=self.vision_encoder.config.image_size,
            )
        if 'height' in self.image_processor.size:
            self.input_size = self.image_processor.size['height']
        else:
            self.input_size = self.image_processor.crop_size['height']

    def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
        strict = False
        if self.config.train_only_image_encoder and 'vd_adapter' not in state_dict and 'dvadapter' not in state_dict:
            # we are loading pure clip weights.
            self.vision_encoder.load_state_dict(state_dict, strict=strict)

        if 'lora_weights' in state_dict:
            # todo add LoRA
            # self.sd_ref().pipeline.load_lora_weights(state_dict["lora_weights"], adapter_name="photomaker")
            # self.sd_ref().pipeline.fuse_lora()
            pass
        if 'clip_fusion' in state_dict:
            self.clip_fusion_module.load_state_dict(state_dict['clip_fusion'], strict=strict)
        if 'id_encoder' in state_dict and (self.adapter_type == 'photo_maker' or self.adapter_type == 'clip_fusion'):
            self.vision_encoder.load_state_dict(state_dict['id_encoder'], strict=strict)
            # check to see if the fuse weights are there
            fuse_weights = {}
            for k, v in state_dict['id_encoder'].items():
                if k.startswith('fuse_module'):
                    k = k.replace('fuse_module.', '')
                    fuse_weights[k] = v
            if len(fuse_weights) > 0:
                try:
                    self.fuse_module.load_state_dict(fuse_weights, strict=strict)
                except Exception as e:

                    print(e)
                    # force load it
                    print(f"force loading fuse module as it did not match")
                    current_state_dict = self.fuse_module.state_dict()
                    for k, v in fuse_weights.items():
                        if len(v.shape) == 1:
                            current_state_dict[k] = v[:current_state_dict[k].shape[0]]
                        elif len(v.shape) == 2:
                            current_state_dict[k] = v[:current_state_dict[k].shape[0], :current_state_dict[k].shape[1]]
                        elif len(v.shape) == 3:
                            current_state_dict[k] = v[:current_state_dict[k].shape[0], :current_state_dict[k].shape[1],
                                                    :current_state_dict[k].shape[2]]
                        elif len(v.shape) == 4:
                            current_state_dict[k] = v[:current_state_dict[k].shape[0], :current_state_dict[k].shape[1],
                                                    :current_state_dict[k].shape[2], :current_state_dict[k].shape[3]]
                        else:
                            raise ValueError(f"unknown shape: {v.shape}")
                    self.fuse_module.load_state_dict(current_state_dict, strict=strict)

        if 'te_adapter' in state_dict:
            self.te_adapter.load_state_dict(state_dict['te_adapter'], strict=strict)
            
        if 'llm_adapter' in state_dict:
            self.llm_adapter.load_state_dict(state_dict['llm_adapter'], strict=strict)

        if 'te_augmenter' in state_dict:
            self.te_augmenter.load_state_dict(state_dict['te_augmenter'], strict=strict)

        if 'vd_adapter' in state_dict:
            self.vd_adapter.load_state_dict(state_dict['vd_adapter'], strict=strict)
        if 'dvadapter' in state_dict:
            self.vd_adapter.load_state_dict(state_dict['dvadapter'], strict=False)

        if 'sv_adapter' in state_dict:
            self.single_value_adapter.load_state_dict(state_dict['sv_adapter'], strict=strict)

        if 'vision_encoder' in state_dict:
            self.vision_encoder.load_state_dict(state_dict['vision_encoder'], strict=strict)

        if 'fuse_module' in state_dict:
            self.fuse_module.load_state_dict(state_dict['fuse_module'], strict=strict)

        if 'ilora' in state_dict:
            try:
                self.ilora_module.load_state_dict(state_dict['ilora'], strict=strict)
            except Exception as e:
                print(e)
        if 'redux_up' in state_dict:
            # state dict is seperated. so recombine it
            new_dict = {}
            for k, v in state_dict.items():
                for k2, v2 in v.items():
                    new_dict[k + '.' + k2] = v2
            self.redux_adapter.load_state_dict(new_dict, strict=True)
        
        if self.adapter_type == 'control_lora':
            # state dict is seperated. so recombine it
            new_dict = {}
            for k, v in state_dict.items():
                for k2, v2 in v.items():
                    new_dict[k + '.' + k2] = v2
            self.control_lora.load_weights(new_dict, strict=strict)
        
        if self.adapter_type == 'i2v':
            # state dict is seperated. so recombine it
            new_dict = {}
            for k, v in state_dict.items():
                for k2, v2 in v.items():
                    new_dict[k + '.' + k2] = v2
            self.i2v_adapter.load_weights(new_dict, strict=strict)
        
        if self.adapter_type == 'subpixel':
            # state dict is seperated. so recombine it
            new_dict = {}
            for k, v in state_dict.items():
                for k2, v2 in v.items():
                    new_dict[k + '.' + k2] = v2
            self.subpixel_adapter.load_weights(new_dict, strict=strict)

        pass

    def state_dict(self) -> OrderedDict:
        state_dict = OrderedDict()
        if self.config.train_only_image_encoder:
            return self.vision_encoder.state_dict()

        if self.adapter_type == 'photo_maker':
            if self.config.train_image_encoder:
                state_dict["id_encoder"] = self.vision_encoder.state_dict()

            state_dict["fuse_module"] = self.fuse_module.state_dict()

            # todo save LoRA
            return state_dict

        elif self.adapter_type == 'clip_fusion':
            if self.config.train_image_encoder:
                state_dict["vision_encoder"] = self.vision_encoder.state_dict()
            state_dict["clip_fusion"] = self.clip_fusion_module.state_dict()
            return state_dict
        elif self.adapter_type == 'text_encoder':
            state_dict["te_adapter"] = self.te_adapter.state_dict()
            return state_dict
        elif self.adapter_type == 'llm_adapter':
            state_dict["llm_adapter"] = self.llm_adapter.state_dict()
            return state_dict
        elif self.adapter_type == 'te_augmenter':
            if self.config.train_image_encoder:
                state_dict["vision_encoder"] = self.vision_encoder.state_dict()
            state_dict["te_augmenter"] = self.te_augmenter.state_dict()
            return state_dict
        elif self.adapter_type == 'vision_direct':
            state_dict["dvadapter"] = self.vd_adapter.state_dict()
            # if self.config.train_image_encoder: # always return vision encoder
            state_dict["vision_encoder"] = self.vision_encoder.state_dict()
            return state_dict
        elif self.adapter_type == 'single_value':
            state_dict["sv_adapter"] = self.single_value_adapter.state_dict()
            return state_dict
        elif self.adapter_type == 'ilora':
            if self.config.train_image_encoder:
                state_dict["vision_encoder"] = self.vision_encoder.state_dict()
            state_dict["ilora"] = self.ilora_module.state_dict()
            return state_dict
        elif self.adapter_type == 'redux':
            d = self.redux_adapter.state_dict()
            for k, v in d.items():
                state_dict[k] = v
            return state_dict
        elif self.adapter_type == 'control_lora':
            d = self.control_lora.get_state_dict()
            for k, v in d.items():
                state_dict[k] = v
            return state_dict
        elif self.adapter_type == 'i2v':
            d = self.i2v_adapter.get_state_dict()
            for k, v in d.items():
                state_dict[k] = v
            return state_dict
        elif self.adapter_type == 'subpixel':
            d = self.subpixel_adapter.get_state_dict()
            for k, v in d.items():
                state_dict[k] = v
            return state_dict
        else:
            raise NotImplementedError

    def add_extra_values(self, extra_values: torch.Tensor, is_unconditional=False):
        if self.adapter_type == 'single_value':
            if is_unconditional:
                self.unconditional_embeds = extra_values.to(self.device, get_torch_dtype(self.sd_ref().dtype))
            else:
                self.conditional_embeds = extra_values.to(self.device, get_torch_dtype(self.sd_ref().dtype))
    
    def condition_noisy_latents(self, latents: torch.Tensor, batch:DataLoaderBatchDTO):
        with torch.no_grad():
            # todo add i2v start frame conditioning here
            
            if self.adapter_type in ['i2v']:
                return self.i2v_adapter.condition_noisy_latents(latents, batch)
            elif self.adapter_type in ['control_lora']:
                # inpainting input is 0-1 (bs, 4, h, w) on batch.inpaint_tensor
                # 4th channel is the mask with 1 being keep area and 0 being area to inpaint.
                sd: StableDiffusion = self.sd_ref()
                inpainting_latent = None
                if self.config.has_inpainting_input:
                    do_dropout = random.random() < self.config.control_image_dropout
                    # do random mask if we dont have one
                    inpaint_tensor = batch.inpaint_tensor
                    if inpaint_tensor is None and not do_dropout:
                        # generate a random one since we dont have one
                        # this will make random blobs, invert the blobs for now as we normanlly inpaint the alpha
                        inpaint_tensor = 1 - generate_random_mask(
                            batch_size=latents.shape[0],
                            height=latents.shape[2],
                            width=latents.shape[3],
                            device=latents.device,
                        ).to(latents.device, latents.dtype)
                    if inpaint_tensor is not None and not do_dropout:
                        
                        if inpaint_tensor.shape[1] == 4:
                            # get just the mask
                            inpainting_tensor_mask = inpaint_tensor[:, 3:4, :, :].to(latents.device, dtype=latents.dtype)
                        elif inpaint_tensor.shape[1] == 3:
                            # rgb mask. Just get one channel
                            inpainting_tensor_mask = inpaint_tensor[:, 0:1, :, :].to(latents.device, dtype=latents.dtype)
                        else:
                            inpainting_tensor_mask = inpaint_tensor
                        
                        # # use our batch latents so we cna avoid ancoding again
                        inpainting_latent = batch.latents
                        
                        # resize the mask to match the new encoded size
                        inpainting_tensor_mask = F.interpolate(inpainting_tensor_mask, size=(inpainting_latent.shape[2], inpainting_latent.shape[3]), mode='bilinear')
                        inpainting_tensor_mask = inpainting_tensor_mask.to(latents.device, latents.dtype)
                        
                        do_mask_invert = False
                        if self.config.invert_inpaint_mask_chance > 0.0:
                            do_mask_invert = random.random() < self.config.invert_inpaint_mask_chance
                        if do_mask_invert:
                            # invert the mask
                            inpainting_tensor_mask = 1 - inpainting_tensor_mask
                        
                        # mask out the inpainting area, it is currently 0 for inpaint area, and 1 for keep area
                        # we are zeroing our the latents in the inpaint area not on the pixel space.
                        inpainting_latent = inpainting_latent * inpainting_tensor_mask
                        
                        # mask needs to be 1 for inpaint area and 0 for area to leave alone. So flip it.
                        inpainting_tensor_mask = 1 - inpainting_tensor_mask
                        # leave the mask as 0-1 and concat on channel of latents
                        inpainting_latent = torch.cat((inpainting_latent, inpainting_tensor_mask), dim=1)
                    else:
                        # we have iinpainting but didnt get a control. or we are doing a dropout
                        # the input needs to be all zeros for the latents and all 1s for the mask
                        inpainting_latent = torch.zeros_like(latents)
                        # add ones for the mask since we are technically inpainting everything
                        inpainting_latent = torch.cat((inpainting_latent, torch.ones_like(inpainting_latent[:, :1, :, :])), dim=1)
                    
                    if self.config.num_control_images == 1:
                        # this is our only control
                        control_latent = inpainting_latent.to(latents.device, latents.dtype)
                        latents = torch.cat((latents, control_latent), dim=1)
                        return latents.detach()
                    
                if control_tensor is None:
                    # concat zeros onto the latents
                    ctrl = torch.zeros(
                        latents.shape[0], # bs
                        latents.shape[1] * self.num_control_images, # ch
                        latents.shape[2], 
                        latents.shape[3], 
                        device=latents.device, 
                        dtype=latents.dtype
                    )
                    if inpainting_latent is not None:
                        # inpainting always comes first
                        ctrl = torch.cat((inpainting_latent, ctrl), dim=1)
                    latents = torch.cat((latents, ctrl), dim=1)
                    return latents.detach()
                # if we have multiple control tensors, they come in like [bs, num_control_images, ch, h, w]
                # if we have 1, it comes in like [bs, ch, h, w]
                # stack out control tensors to be [bs, ch * num_control_images, h, w]
                
                control_tensor = batch.control_tensor.to(latents.device, dtype=latents.dtype)
                
                control_tensor_list = []
                if len(control_tensor.shape) == 4:
                    control_tensor_list.append(control_tensor)
                else:
                    # reshape
                    control_tensor = control_tensor.view(
                        control_tensor.shape[0], 
                        control_tensor.shape[1] * control_tensor.shape[2], 
                        control_tensor.shape[3], 
                        control_tensor.shape[4]
                    )
                    control_tensor_list = control_tensor.chunk(self.num_control_images, dim=1)
                control_latent_list = []
                for control_tensor in control_tensor_list:
                    do_dropout = random.random() < self.config.control_image_dropout
                    if do_dropout:
                        # dropout with noise
                        control_latent_list.append(torch.zeros_like(batch.latents))
                    else:
                        # it is 0-1 need to convert to -1 to 1
                        control_tensor = control_tensor * 2 - 1

                        control_tensor = control_tensor.to(sd.vae_device_torch, dtype=sd.torch_dtype)
                        
                        # if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
                        if control_tensor.shape[2] != batch.tensor.shape[2] or control_tensor.shape[3] != batch.tensor.shape[3]:
                            control_tensor = F.interpolate(control_tensor, size=(batch.tensor.shape[2], batch.tensor.shape[3]), mode='bicubic')
                        
                        # encode it
                        control_latent = sd.encode_images(control_tensor).to(latents.device, latents.dtype)
                        control_latent_list.append(control_latent)
                # stack them on the channel dimension
                control_latent = torch.cat(control_latent_list, dim=1)
                if inpainting_latent is not None:
                    # inpainting always comes first
                    control_latent = torch.cat((inpainting_latent, control_latent), dim=1)
                # concat it onto the latents
                latents = torch.cat((latents, control_latent), dim=1)
                return latents.detach()
            return latents


    def condition_prompt(
            self,
            prompt: Union[List[str], str],
            is_unconditional: bool = False,
    ):
        if self.adapter_type in ['clip_fusion', 'ilora', 'vision_direct', 'redux', 'control_lora', 'subpixel', 'i2v']:
            return prompt
        elif self.adapter_type == 'text_encoder':
            # todo allow for training
            with torch.no_grad():
                # encode and save the embeds
                if is_unconditional:
                    self.unconditional_embeds = self.te_adapter.encode_text(prompt).detach()
                else:
                    self.conditional_embeds = self.te_adapter.encode_text(prompt).detach()
        elif self.adapter_type == 'llm_adapter':
            # todo allow for training
            with torch.no_grad():
                # encode and save the embeds
                if is_unconditional:
                    self.unconditional_embeds = self.llm_adapter.encode_text(prompt).detach()
                else:
                    self.conditional_embeds = self.llm_adapter.encode_text(prompt).detach()
            return prompt
        elif self.adapter_type == 'photo_maker':
            if is_unconditional:
                return prompt
            else:

                with torch.no_grad():
                    was_list = isinstance(prompt, list)
                    if not was_list:
                        prompt_list = [prompt]
                    else:
                        prompt_list = prompt

                    new_prompt_list = []
                    token_mask_list = []

                    for prompt in prompt_list:

                        our_class = None
                        # find a class in the prompt
                        prompt_parts = prompt.split(' ')
                        prompt_parts = [p.strip().lower() for p in prompt_parts if len(p) > 0]

                        new_prompt_parts = []
                        tokened_prompt_parts = []
                        for idx, prompt_part in enumerate(prompt_parts):
                            new_prompt_parts.append(prompt_part)
                            tokened_prompt_parts.append(prompt_part)
                            if prompt_part in self.config.class_names:
                                our_class = prompt_part
                                # add the flag word
                                tokened_prompt_parts.append(self.flag_word)

                                if self.num_control_images > 1:
                                    # add the rest
                                    for _ in range(self.num_control_images - 1):
                                        new_prompt_parts.extend(prompt_parts[idx + 1:])

                                # add the rest
                                tokened_prompt_parts.extend(prompt_parts[idx + 1:])
                                new_prompt_parts.extend(prompt_parts[idx + 1:])

                                break

                        prompt = " ".join(new_prompt_parts)
                        tokened_prompt = " ".join(tokened_prompt_parts)

                        if our_class is None:
                            # add the first one to the front of the prompt
                            tokened_prompt = self.config.class_names[0] + ' ' + self.flag_word + ' ' + prompt
                            our_class = self.config.class_names[0]
                            prompt = " ".join(
                                [self.config.class_names[0] for _ in range(self.num_control_images)]) + ' ' + prompt

                        # add the prompt to the list
                        new_prompt_list.append(prompt)

                        # tokenize them with just the first tokenizer
                        tokenizer = self.sd_ref().tokenizer
                        if isinstance(tokenizer, list):
                            tokenizer = tokenizer[0]

                        flag_token = tokenizer.convert_tokens_to_ids(self.flag_word)

                        tokenized_prompt = tokenizer.encode(prompt)
                        tokenized_tokened_prompt = tokenizer.encode(tokened_prompt)

                        flag_idx = tokenized_tokened_prompt.index(flag_token)

                        class_token = tokenized_prompt[flag_idx - 1]

                        boolean_mask = torch.zeros(flag_idx - 1, dtype=torch.bool)
                        boolean_mask = torch.cat((boolean_mask, torch.ones(self.num_control_images, dtype=torch.bool)))
                        boolean_mask = boolean_mask.to(self.device)
                        # zero pad it to 77
                        boolean_mask = F.pad(boolean_mask, (0, 77 - boolean_mask.shape[0]), value=False)

                        token_mask_list.append(boolean_mask)

                    self.token_mask = torch.cat(token_mask_list, dim=0).to(self.device)

                    prompt_list = new_prompt_list

                    if not was_list:
                        prompt = prompt_list[0]
                    else:
                        prompt = prompt_list

                    return prompt

        else:
            return prompt

    def condition_encoded_embeds(
            self,
            tensors_0_1: torch.Tensor,
            prompt_embeds: PromptEmbeds,
            is_training=False,
            has_been_preprocessed=False,
            is_unconditional=False,
            quad_count=4,
            is_generating_samples=False,
    ) -> PromptEmbeds:
        if self.adapter_type == 'text_encoder':
            # replace the prompt embed with ours
            if is_unconditional:
                return self.unconditional_embeds.clone()
            return self.conditional_embeds.clone()
        if self.adapter_type == 'llm_adapter':
            # replace the prompt embed with ours
            if is_unconditional:
                prompt_embeds.text_embeds = self.unconditional_embeds.text_embeds.clone()
                prompt_embeds.attention_mask = self.unconditional_embeds.attention_mask.clone()
                return prompt_embeds
            prompt_embeds.text_embeds = self.conditional_embeds.text_embeds.clone()
            prompt_embeds.attention_mask = self.conditional_embeds.attention_mask.clone()
            return prompt_embeds

        if self.adapter_type == 'ilora':
            return prompt_embeds

        if self.adapter_type == 'photo_maker' or self.adapter_type == 'clip_fusion' or self.adapter_type == 'redux':
            if is_unconditional:
                # we dont condition the negative embeds for photo maker
                return prompt_embeds.clone()
            with torch.no_grad():
                # on training the clip image is created in the dataloader
                if not has_been_preprocessed:
                    # tensors should be 0-1
                    if tensors_0_1.ndim == 3:
                        tensors_0_1 = tensors_0_1.unsqueeze(0)
                    # training tensors are 0 - 1
                    tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16)
                    # if images are out of this range throw error
                    if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3:
                        raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format(
                            tensors_0_1.min(), tensors_0_1.max()
                        ))
                    clip_image = self.image_processor(
                        images=tensors_0_1,
                        return_tensors="pt",
                        do_resize=True,
                        do_rescale=False,
                        do_convert_rgb=True
                    ).pixel_values
                else:
                    clip_image = tensors_0_1
                clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()

            if self.config.quad_image:
                # split the 4x4 grid and stack on batch
                ci1, ci2 = clip_image.chunk(2, dim=2)
                ci1, ci3 = ci1.chunk(2, dim=3)
                ci2, ci4 = ci2.chunk(2, dim=3)
                to_cat = []
                for i, ci in enumerate([ci1, ci2, ci3, ci4]):
                    if i < quad_count:
                        to_cat.append(ci)
                    else:
                        break

                clip_image = torch.cat(to_cat, dim=0).detach()

            if self.adapter_type == 'photo_maker':
                # Embeddings need to be  (b, num_inputs, c, h, w) for now, just put 1 input image
                clip_image = clip_image.unsqueeze(1)
                with torch.set_grad_enabled(is_training):
                    if is_training and self.config.train_image_encoder:
                        self.vision_encoder.train()
                        clip_image = clip_image.requires_grad_(True)
                        id_embeds = self.vision_encoder(
                            clip_image,
                            do_projection2=isinstance(self.sd_ref().text_encoder, list),
                        )
                    else:
                        with torch.no_grad():
                            self.vision_encoder.eval()
                            id_embeds = self.vision_encoder(
                                clip_image, do_projection2=isinstance(self.sd_ref().text_encoder, list)
                            ).detach()

                    prompt_embeds.text_embeds = self.fuse_module(
                        prompt_embeds.text_embeds,
                        id_embeds,
                        self.token_mask
                    )
                    return prompt_embeds
            elif self.adapter_type == 'clip_fusion':
                with torch.set_grad_enabled(is_training):
                    if is_training and self.config.train_image_encoder:
                        self.vision_encoder.train()
                        clip_image = clip_image.requires_grad_(True)
                        id_embeds = self.vision_encoder(
                            clip_image,
                            output_hidden_states=True,
                        )
                    else:
                        with torch.no_grad():
                            self.vision_encoder.eval()
                            id_embeds = self.vision_encoder(
                                clip_image, output_hidden_states=True
                            )

                    img_embeds = id_embeds['last_hidden_state']

                    if self.config.quad_image:
                        # get the outputs of the quat
                        chunks = img_embeds.chunk(quad_count, dim=0)
                        chunk_sum = torch.zeros_like(chunks[0])
                        for chunk in chunks:
                            chunk_sum = chunk_sum + chunk
                        # get the mean of them

                        img_embeds = chunk_sum / quad_count

                    if not is_training or not self.config.train_image_encoder:
                        img_embeds = img_embeds.detach()

                    prompt_embeds.text_embeds = self.clip_fusion_module(
                        prompt_embeds.text_embeds,
                        img_embeds
                    )
                    return prompt_embeds

            elif self.adapter_type == 'redux':
                with torch.set_grad_enabled(is_training):
                    if is_training and self.config.train_image_encoder:
                        self.vision_encoder.train()
                        clip_image = clip_image.requires_grad_(True)
                        id_embeds = self.vision_encoder(
                            clip_image,
                            output_hidden_states=True,
                        )
                    else:
                        with torch.no_grad():
                            self.vision_encoder.eval()
                            id_embeds = self.vision_encoder(
                                clip_image, output_hidden_states=True
                            )

                    img_embeds = id_embeds['last_hidden_state']

                    if self.config.quad_image:
                        # get the outputs of the quat
                        chunks = img_embeds.chunk(quad_count, dim=0)
                        chunk_sum = torch.zeros_like(chunks[0])
                        for chunk in chunks:
                            chunk_sum = chunk_sum + chunk
                        # get the mean of them

                        img_embeds = chunk_sum / quad_count

                    if not is_training or not self.config.train_image_encoder:
                        img_embeds = img_embeds.detach()
                    
                    img_embeds = self.redux_adapter(img_embeds.to(self.device, get_torch_dtype(self.sd_ref().dtype)))

                    prompt_embeds.text_embeds = torch.cat((prompt_embeds.text_embeds, img_embeds), dim=-2)
                    return prompt_embeds
        else:
            return prompt_embeds

    def get_empty_clip_image(self, batch_size: int, shape=None) -> torch.Tensor:
        with torch.no_grad():
            if shape is None:
                shape = [batch_size, 3, self.input_size, self.input_size]
            tensors_0_1 = torch.rand(shape, device=self.device)
            noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
                                     dtype=get_torch_dtype(self.sd_ref().dtype))
            tensors_0_1 = tensors_0_1 * noise_scale
            # tensors_0_1 = tensors_0_1 * 0
            mean = torch.tensor(self.clip_image_processor.image_mean).to(
                self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
            ).detach()
            std = torch.tensor(self.clip_image_processor.image_std).to(
                self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
            ).detach()
            tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
            clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
        return clip_image.detach()

    def train(self, mode: bool = True):
        if self.config.train_image_encoder:
            self.vision_encoder.train(mode)
        super().train(mode)

    def trigger_pre_te(
            self,
            tensors_0_1: Optional[torch.Tensor]=None,
            tensors_preprocessed: Optional[torch.Tensor]=None, # preprocessed by the dataloader
            is_training=False,
            has_been_preprocessed=False,
            batch_tensor: Optional[torch.Tensor]=None,
            quad_count=4,
            batch_size=1,
    ) -> PromptEmbeds:
        if tensors_0_1 is not None:
            # actual 0 - 1 image
            self.cached_control_image_0_1 = tensors_0_1
        else:
            # image has been processed through the dataloader and is prepped for vision encoder
            self.cached_control_image_0_1 = None
        if batch_tensor is not None and self.cached_control_image_0_1 is None:
            # convert it to 0 - 1
            to_cache = batch_tensor / 2 + 0.5
            # videos come in (bs, num_frames, channels, height, width)
            # images come in (bs, channels, height, width)
            # if it is a video, just grad first frame
            if len(to_cache.shape) == 5:
                to_cache = to_cache[:, 0:1, :, :, :]
                to_cache = to_cache.squeeze(1)
            self.cached_control_image_0_1 = to_cache
        
        if tensors_preprocessed is not None and has_been_preprocessed:
            tensors_0_1 = tensors_preprocessed
        # if self.adapter_type == 'ilora' or self.adapter_type == 'vision_direct' or self.adapter_type == 'te_augmenter':
        if self.adapter_type in ['ilora', 'vision_direct', 'te_augmenter', 'i2v']:
            skip_unconditional = self.sd_ref().is_flux
            if tensors_0_1 is None:
                tensors_0_1 = self.get_empty_clip_image(batch_size)
                has_been_preprocessed = True

            with torch.no_grad():
                # on training the clip image is created in the dataloader
                if not has_been_preprocessed:
                    # tensors should be 0-1
                    if tensors_0_1.ndim == 3:
                        tensors_0_1 = tensors_0_1.unsqueeze(0)
                    # training tensors are 0 - 1
                    tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16)
                    # if images are out of this range throw error
                    if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3:
                        raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format(
                            tensors_0_1.min(), tensors_0_1.max()
                        ))
                    clip_image = self.image_processor(
                        images=tensors_0_1,
                        return_tensors="pt",
                        do_resize=True,
                        do_rescale=False,
                    ).pixel_values
                else:
                    clip_image = tensors_0_1
                    
                # if is pixtral
                if self.config.image_encoder_arch == 'pixtral' and self.config.pixtral_random_image_size:
                    # get the random size
                    random_size = random.randint(256, self.config.pixtral_max_image_size)
                    # images are already sized for max size, we have to fit them to the pixtral patch size to reduce / enlarge it farther.
                    h, w = clip_image.shape[2], clip_image.shape[3]
                    current_base_size = int(math.sqrt(w * h))
                    ratio = current_base_size / random_size
                    if ratio > 1:
                        w = round(w / ratio)
                        h = round(h / ratio)

                    width_tokens = (w - 1) // self.image_processor.image_patch_size + 1
                    height_tokens = (h - 1) // self.image_processor.image_patch_size + 1
                    assert width_tokens > 0
                    assert height_tokens > 0
                    
                    new_image_size = (
                        width_tokens * self.image_processor.image_patch_size,
                        height_tokens * self.image_processor.image_patch_size,
                    )
                    
                    # resize the image
                    clip_image = F.interpolate(clip_image, size=new_image_size, mode='bicubic', align_corners=False)
                    

                batch_size = clip_image.shape[0]
                if self.config.control_image_dropout > 0 and is_training:
                    clip_batch = torch.chunk(clip_image, batch_size, dim=0)
                    unconditional_batch = torch.chunk(self.get_empty_clip_image(batch_size, shape=clip_image.shape).to(
                        clip_image.device, dtype=clip_image.dtype
                    ), batch_size, dim=0)
                    combine_list = []
                    for i in range(batch_size):
                        do_dropout = random.random() < self.config.control_image_dropout
                        if do_dropout:
                            # dropout with noise
                            combine_list.append(unconditional_batch[i])
                        else:
                            combine_list.append(clip_batch[i])
                    clip_image = torch.cat(combine_list, dim=0)
                
                if self.adapter_type in ['vision_direct', 'te_augmenter', 'i2v'] and not skip_unconditional:
                    # add an unconditional so we can save it
                    unconditional = self.get_empty_clip_image(batch_size, shape=clip_image.shape).to(
                        clip_image.device, dtype=clip_image.dtype
                    )
                    clip_image = torch.cat([unconditional, clip_image], dim=0)

                clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()

            if self.config.quad_image:
                # split the 4x4 grid and stack on batch
                ci1, ci2 = clip_image.chunk(2, dim=2)
                ci1, ci3 = ci1.chunk(2, dim=3)
                ci2, ci4 = ci2.chunk(2, dim=3)
                to_cat = []
                for i, ci in enumerate([ci1, ci2, ci3, ci4]):
                    if i < quad_count:
                        to_cat.append(ci)
                    else:
                        break

                clip_image = torch.cat(to_cat, dim=0).detach()

            if self.adapter_type == 'ilora':
                with torch.set_grad_enabled(is_training):
                    if is_training and self.config.train_image_encoder:
                        self.vision_encoder.train()
                        clip_image = clip_image.requires_grad_(True)
                        id_embeds = self.vision_encoder(
                            clip_image,
                            output_hidden_states=True,
                        )
                    else:
                        with torch.no_grad():
                            self.vision_encoder.eval()
                            id_embeds = self.vision_encoder(
                                clip_image, output_hidden_states=True
                            )

                    if self.config.clip_layer == 'penultimate_hidden_states':
                        img_embeds = id_embeds.hidden_states[-2]
                    elif self.config.clip_layer == 'last_hidden_state':
                        img_embeds = id_embeds.hidden_states[-1]
                    elif self.config.clip_layer == 'image_embeds':
                        img_embeds = id_embeds.image_embeds
                    else:
                        raise ValueError(f"unknown clip layer: {self.config.clip_layer}")

                    if self.config.quad_image:
                        # get the outputs of the quat
                        chunks = img_embeds.chunk(quad_count, dim=0)
                        chunk_sum = torch.zeros_like(chunks[0])
                        for chunk in chunks:
                            chunk_sum = chunk_sum + chunk
                        # get the mean of them

                        img_embeds = chunk_sum / quad_count

                    if not is_training or not self.config.train_image_encoder:
                        img_embeds = img_embeds.detach()

                    self.ilora_module(img_embeds)
            # if self.adapter_type == 'vision_direct' or self.adapter_type == 'te_augmenter':
            if self.adapter_type in ['vision_direct', 'te_augmenter', 'i2v']:
                with torch.set_grad_enabled(is_training):
                    if is_training and self.config.train_image_encoder:
                        self.vision_encoder.train()
                        clip_image = clip_image.requires_grad_(True)
                    else:
                        with torch.no_grad():
                            self.vision_encoder.eval()
                    self.vision_encoder.to(self.device)
                    clip_output = self.vision_encoder(
                        clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)),
                        output_hidden_states=True,
                    )
                    if self.config.clip_layer == 'penultimate_hidden_states':
                        # they skip last layer for ip+
                        # https://github.com/tencent-ailab/IP-Adapter/blob/f4b6742db35ea6d81c7b829a55b0a312c7f5a677/tutorial_train_plus.py#L403C26-L403C26
                        clip_image_embeds = clip_output.hidden_states[-2]
                    elif self.config.clip_layer == 'last_hidden_state':
                        clip_image_embeds = clip_output.hidden_states[-1]
                    else:
                        if hasattr(clip_output, 'image_embeds'):
                            clip_image_embeds = clip_output.image_embeds
                        elif hasattr(clip_output, 'pooler_output'):
                            clip_image_embeds = clip_output.pooler_output
                        # TODO should we always norm image embeds?
                        # get norm embeddings
                        # l2_norm = torch.norm(clip_image_embeds, p=2)
                        # clip_image_embeds = clip_image_embeds / l2_norm

                    if not is_training or not self.config.train_image_encoder:
                        clip_image_embeds = clip_image_embeds.detach()

                    if self.adapter_type == 'te_augmenter':
                        clip_image_embeds = self.te_augmenter(clip_image_embeds)

                    if self.adapter_type == 'vision_direct':
                        clip_image_embeds = self.vd_adapter(clip_image_embeds)

                    # save them to the conditional and unconditional
                    try:
                        if skip_unconditional:
                            self.unconditional_embeds, self.conditional_embeds = None, clip_image_embeds
                        else:
                            self.unconditional_embeds, self.conditional_embeds = clip_image_embeds.chunk(2, dim=0)
                    except ValueError:
                        raise ValueError(f"could not split the clip image embeds into 2. Got shape: {clip_image_embeds.shape}")

    def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
        if self.config.train_only_image_encoder:
            yield from self.vision_encoder.parameters(recurse)
            return
        if self.config.type == 'photo_maker':
            yield from self.fuse_module.parameters(recurse)
            if self.config.train_image_encoder:
                yield from self.vision_encoder.parameters(recurse)
        elif self.config.type == 'clip_fusion':
            yield from self.clip_fusion_module.parameters(recurse)
            if self.config.train_image_encoder:
                yield from self.vision_encoder.parameters(recurse)
        elif self.config.type == 'ilora':
            yield from self.ilora_module.parameters(recurse)
            if self.config.train_image_encoder:
                yield from self.vision_encoder.parameters(recurse)
        elif self.config.type == 'text_encoder':
            for attn_processor in self.te_adapter.adapter_modules:
                yield from attn_processor.parameters(recurse)
        elif self.config.type == 'llm_adapter':
            yield from self.llm_adapter.parameters(recurse)
        elif self.config.type == 'vision_direct':
            if self.config.train_scaler:
                # only yield the self.block_scaler = torch.nn.Parameter(torch.tensor([1.0] * num_modules)
                yield self.vd_adapter.block_scaler
            else:
                for attn_processor in self.vd_adapter.adapter_modules:
                    yield from attn_processor.parameters(recurse)
                if self.config.train_image_encoder:
                    yield from self.vision_encoder.parameters(recurse)
                if self.vd_adapter.resampler is not None:
                    yield from self.vd_adapter.resampler.parameters(recurse)
                if self.vd_adapter.pool is not None:
                    yield from self.vd_adapter.pool.parameters(recurse)
                if self.vd_adapter.sparse_autoencoder is not None:
                    yield from self.vd_adapter.sparse_autoencoder.parameters(recurse)
        elif self.config.type == 'te_augmenter':
            yield from self.te_augmenter.parameters(recurse)
            if self.config.train_image_encoder:
                yield from self.vision_encoder.parameters(recurse)
        elif self.config.type == 'single_value':
            yield from self.single_value_adapter.parameters(recurse)
        elif self.config.type == 'redux':
            yield from self.redux_adapter.parameters(recurse)
        elif self.config.type == 'control_lora':
            param_list = self.control_lora.get_params()
            for param in param_list:
                yield param
        elif self.config.type == 'i2v':
            param_list = self.i2v_adapter.get_params()
            for param in param_list:
                yield param
        elif self.config.type == 'subpixel':
            param_list = self.subpixel_adapter.get_params()
            for param in param_list:
                yield param
        else:
            raise NotImplementedError

    def enable_gradient_checkpointing(self):
        if hasattr(self.vision_encoder, "enable_gradient_checkpointing"):
            self.vision_encoder.enable_gradient_checkpointing()
        elif hasattr(self.vision_encoder, 'gradient_checkpointing'):
            self.vision_encoder.gradient_checkpointing = True

    def get_additional_save_metadata(self) -> Dict[str, Any]:
        additional = {}
        if self.config.type == 'ilora':
            extra = self.ilora_module.get_additional_save_metadata()
            for k, v in extra.items():
                additional[k] = v
            additional['clip_layer'] = self.config.clip_layer
            additional['image_encoder_arch'] = self.config.head_dim
        return additional

    def post_weight_update(self):
        # do any kind of updates after the weight update
        if self.config.type == 'vision_direct':
            self.vd_adapter.post_weight_update()
        pass