File size: 10,889 Bytes
1c72248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import inspect
import weakref
import torch
from typing import TYPE_CHECKING
from toolkit.lora_special import LoRASpecialNetwork
from diffusers import FluxTransformer2DModel
# weakref


if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion
    from toolkit.config_modules import AdapterConfig, TrainConfig, ModelConfig
    from toolkit.custom_adapter import CustomAdapter
    

# after each step we concat the control image with the latents 
# latent_model_input = torch.cat([latents, control_image], dim=2)
# the x_embedder has a full rank lora to handle the additional channels
# this replaces the x_embedder with a full rank lora. on flux this is 
# x_embedder(diffusers) or img_in(bfl)

# Flux
# img_in.lora_A.weight	[128, 128]	
# img_in.lora_B.bias	[3 072]	
# img_in.lora_B.weight	[3 072, 128]	
    

class ImgEmbedder(torch.nn.Module):
    def __init__(
        self,
        adapter: 'ControlLoraAdapter',
        orig_layer: torch.nn.Linear,
        in_channels=64,
        out_channels=3072
    ):
        super().__init__()
        # only do the weight for the new input. We combine with the original linear layer
        init = torch.randn(out_channels, in_channels, device=orig_layer.weight.device, dtype=orig_layer.weight.dtype) * 0.01
        self.weight = torch.nn.Parameter(init)
        
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.orig_layer_ref: weakref.ref = weakref.ref(orig_layer)
        
    @classmethod
    def from_model(
        cls, 
        model: FluxTransformer2DModel, 
        adapter: 'ControlLoraAdapter', 
        num_control_images=1,
        has_inpainting_input=False
    ):
        if model.__class__.__name__ == 'FluxTransformer2DModel':            
            num_adapter_in_channels = model.x_embedder.in_features * num_control_images
            
            if has_inpainting_input:
                # inpainting has the mask before packing latents. it is normally 16 ch + 1ch mask
                # packed it is 64ch + 4ch mask
                # so we need to add 4 to the input channels
                num_adapter_in_channels += 4
            
            x_embedder: torch.nn.Linear = model.x_embedder
            img_embedder = cls(
                adapter, 
                orig_layer=x_embedder,
                in_channels=num_adapter_in_channels,
                out_channels=x_embedder.out_features,
            )
            
            # hijack the forward method
            x_embedder._orig_ctrl_lora_forward = x_embedder.forward
            x_embedder.forward = img_embedder.forward

            # update the config of the transformer
            model.config.in_channels = model.config.in_channels * (num_control_images + 1)
            model.config["in_channels"] = model.config.in_channels
            
            return img_embedder
        else:
            raise ValueError("Model not supported") 
        
    @property
    def is_active(self):
        return self.adapter_ref().is_active
        
    
    def forward(self, x):
        if not self.is_active:
            # make sure lora is not active
            if self.adapter_ref().control_lora is not None:
                self.adapter_ref().control_lora.is_active = False
            return self.orig_layer_ref()._orig_ctrl_lora_forward(x)
        
        # make sure lora is active
        if self.adapter_ref().control_lora is not None:
            self.adapter_ref().control_lora.is_active = True
        
        orig_device = x.device
        orig_dtype = x.dtype
    
        x = x.to(self.weight.device, dtype=self.weight.dtype)
        
        orig_weight = self.orig_layer_ref().weight.data.detach()
        orig_weight = orig_weight.to(self.weight.device, dtype=self.weight.dtype)
        linear_weight = torch.cat([orig_weight, self.weight], dim=1)
        
        bias = None
        if self.orig_layer_ref().bias is not None:
            bias = self.orig_layer_ref().bias.data.detach().to(self.weight.device, dtype=self.weight.dtype)
            
        x = torch.nn.functional.linear(x, linear_weight, bias)
        
        x = x.to(orig_device, dtype=orig_dtype)
        return x
    


class ControlLoraAdapter(torch.nn.Module):
    def __init__(
        self,
        adapter: 'CustomAdapter',
        sd: 'StableDiffusion',
        config: 'AdapterConfig',
        train_config: 'TrainConfig'
    ):
        super().__init__()
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.sd_ref = weakref.ref(sd)
        self.model_config: ModelConfig = sd.model_config
        self.network_config = config.lora_config
        self.train_config = train_config
        self.device_torch = sd.device_torch
        self.control_lora = None
        
        if self.network_config is not None:
        
            network_kwargs = {} if self.network_config.network_kwargs is None else self.network_config.network_kwargs
            if hasattr(sd, 'target_lora_modules'):
                network_kwargs['target_lin_modules'] = self.sd.target_lora_modules
                
            if 'ignore_if_contains' not in network_kwargs:
                network_kwargs['ignore_if_contains'] = []
            
            # always ignore x_embedder
            network_kwargs['ignore_if_contains'].append('x_embedder')
                
            self.control_lora = LoRASpecialNetwork(
                text_encoder=sd.text_encoder,
                unet=sd.unet,
                lora_dim=self.network_config.linear,
                multiplier=1.0,
                alpha=self.network_config.linear_alpha,
                train_unet=self.train_config.train_unet,
                train_text_encoder=self.train_config.train_text_encoder,
                conv_lora_dim=self.network_config.conv,
                conv_alpha=self.network_config.conv_alpha,
                is_sdxl=self.model_config.is_xl or self.model_config.is_ssd,
                is_v2=self.model_config.is_v2,
                is_v3=self.model_config.is_v3,
                is_pixart=self.model_config.is_pixart,
                is_auraflow=self.model_config.is_auraflow,
                is_flux=self.model_config.is_flux,
                is_lumina2=self.model_config.is_lumina2,
                is_ssd=self.model_config.is_ssd,
                is_vega=self.model_config.is_vega,
                dropout=self.network_config.dropout,
                use_text_encoder_1=self.model_config.use_text_encoder_1,
                use_text_encoder_2=self.model_config.use_text_encoder_2,
                use_bias=False,
                is_lorm=False,
                network_config=self.network_config,
                network_type=self.network_config.type,
                transformer_only=self.network_config.transformer_only,
                is_transformer=sd.is_transformer,
                base_model=sd,
                **network_kwargs
            )
            self.control_lora.force_to(self.device_torch, dtype=torch.float32)
            self.control_lora._update_torch_multiplier()
            self.control_lora.apply_to(
                sd.text_encoder,
                sd.unet,
                self.train_config.train_text_encoder,
                self.train_config.train_unet
            )
            self.control_lora.can_merge_in = False
            self.control_lora.prepare_grad_etc(sd.text_encoder, sd.unet)
            if self.train_config.gradient_checkpointing:
                self.control_lora.enable_gradient_checkpointing()
            
        self.x_embedder = ImgEmbedder.from_model(
            sd.unet, 
            self,
            num_control_images=config.num_control_images,
            has_inpainting_input=config.has_inpainting_input
        )
        self.x_embedder.to(self.device_torch)

    def get_params(self):
        if self.control_lora is not None:
            config = {
                'text_encoder_lr': self.train_config.lr,
                'unet_lr': self.train_config.lr,
            }
            sig = inspect.signature(self.control_lora.prepare_optimizer_params)
            if 'default_lr' in sig.parameters:
                config['default_lr'] = self.train_config.lr
            if 'learning_rate' in sig.parameters:
                config['learning_rate'] = self.train_config.lr
            params_net = self.control_lora.prepare_optimizer_params(
                **config
            )
            
            # we want only tensors here
            params = []
            for p in params_net:
                if isinstance(p, dict):
                    params += p["params"]
                elif isinstance(p, torch.Tensor):
                    params.append(p)
                elif isinstance(p, list):
                    params += p
        else:
            params = []
            
        # make sure the embedder is float32
        self.x_embedder.to(torch.float32)
        
        params += list(self.x_embedder.parameters())
        
        # we need to be able to yield from the list like yield from params

        return params
    
    def load_weights(self, state_dict, strict=True):
        lora_sd = {}
        img_embedder_sd = {}
        for key, value in state_dict.items():
            if "x_embedder" in key:
                new_key = key.replace("transformer.x_embedder.", "")
                img_embedder_sd[new_key] = value
            else:
                lora_sd[key] = value
        
        # todo process state dict before loading
        if self.control_lora is not None:
            self.control_lora.load_weights(lora_sd)
        # automatically upgrade the x imbedder if more dims are added
        if self.x_embedder.weight.shape[1] > img_embedder_sd['weight'].shape[1]:
            print("Upgrading x_embedder from {} to {}".format(
                img_embedder_sd['weight'].shape[1], 
                self.x_embedder.weight.shape[1]
            ))
            while img_embedder_sd['weight'].shape[1] < self.x_embedder.weight.shape[1]:
                img_embedder_sd['weight'] = torch.cat([img_embedder_sd['weight'] ] * 2, dim=1)
            if img_embedder_sd['weight'].shape[1] > self.x_embedder.weight.shape[1]:
                img_embedder_sd['weight'] = img_embedder_sd['weight'][:, :self.x_embedder.weight.shape[1]]
        self.x_embedder.load_state_dict(img_embedder_sd, strict=False)
        
    def get_state_dict(self):
        if self.control_lora is not None:
            lora_sd = self.control_lora.get_state_dict(dtype=torch.float32)
        else:
            lora_sd = {}
        # todo make sure we match loras elseware. 
        img_embedder_sd = self.x_embedder.state_dict()
        for key, value in img_embedder_sd.items():
            lora_sd[f"transformer.x_embedder.{key}"] = value
        return lora_sd
    
    @property
    def is_active(self):
        return self.adapter_ref().is_active