File size: 62,068 Bytes
1c72248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
import copy
import gc
import inspect
import json
import random
import shutil
import typing
from typing import Optional, Union, List, Literal
import os
from collections import OrderedDict
import copy
import yaml
from PIL import Image
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
from torch.nn import Parameter
from tqdm import tqdm
from torchvision.transforms import Resize, transforms

from toolkit.clip_vision_adapter import ClipVisionAdapter
from toolkit.custom_adapter import CustomAdapter
from toolkit.ip_adapter import IPAdapter
from toolkit.config_modules import ModelConfig, GenerateImageConfig, ModelArch
from toolkit.models.decorator import Decorator
from toolkit.paths import KEYMAPS_ROOT
from toolkit.prompt_utils import inject_trigger_into_prompt, PromptEmbeds, concat_prompt_embeds
from toolkit.reference_adapter import ReferenceAdapter
from toolkit.sd_device_states_presets import empty_preset
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import torch
from toolkit.pipelines import CustomStableDiffusionXLPipeline
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, T2IAdapter, DDPMScheduler, \
    LCMScheduler, Transformer2DModel, AutoencoderTiny, ControlNetModel
import diffusers
from diffusers import \
    AutoencoderKL, \
    UNet2DConditionModel
from diffusers import PixArtAlphaPipeline
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection

from toolkit.accelerator import get_accelerator, unwrap_model
from typing import TYPE_CHECKING
from toolkit.print import print_acc

if TYPE_CHECKING:
    from toolkit.lora_special import LoRASpecialNetwork
    from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO

# tell it to shut up
diffusers.logging.set_verbosity(diffusers.logging.ERROR)

SD_PREFIX_VAE = "vae"
SD_PREFIX_UNET = "unet"
SD_PREFIX_REFINER_UNET = "refiner_unet"
SD_PREFIX_TEXT_ENCODER = "te"

SD_PREFIX_TEXT_ENCODER1 = "te0"
SD_PREFIX_TEXT_ENCODER2 = "te1"

# prefixed diffusers keys
DO_NOT_TRAIN_WEIGHTS = [
    "unet_time_embedding.linear_1.bias",
    "unet_time_embedding.linear_1.weight",
    "unet_time_embedding.linear_2.bias",
    "unet_time_embedding.linear_2.weight",
    "refiner_unet_time_embedding.linear_1.bias",
    "refiner_unet_time_embedding.linear_1.weight",
    "refiner_unet_time_embedding.linear_2.bias",
    "refiner_unet_time_embedding.linear_2.weight",
]

DeviceStatePreset = Literal['cache_latents', 'generate']


class BlankNetwork:

    def __init__(self):
        self.multiplier = 1.0
        self.is_active = True
        self.is_merged_in = False
        self.can_merge_in = False

    def __enter__(self):
        self.is_active = True

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.is_active = False

    def train(self):
        pass


def flush():
    torch.cuda.empty_cache()
    gc.collect()


UNET_IN_CHANNELS = 4  # Stable Diffusion の in_channels は 4 で固定。XLも同じ。
# VAE_SCALE_FACTOR = 8  # 2 ** (len(vae.config.block_out_channels) - 1) = 8


class BaseModel:
    # override these in child classes
    arch = None

    def __init__(
            self,
            device,
            model_config: ModelConfig,
            dtype='fp16',
            custom_pipeline=None,
            noise_scheduler=None,
            **kwargs
    ):
        self.accelerator = get_accelerator()
        self.custom_pipeline = custom_pipeline
        self.device = str(self.accelerator.device)
        self.dtype = dtype
        self.torch_dtype = get_torch_dtype(dtype)
        self.device_torch = self.accelerator.device

        self.vae_device_torch = self.accelerator.device
        self.vae_torch_dtype = get_torch_dtype(model_config.vae_dtype)

        self.te_device_torch = self.accelerator.device
        self.te_torch_dtype = get_torch_dtype(model_config.te_dtype)

        self.model_config = model_config
        self.prediction_type = "v_prediction" if self.model_config.is_v_pred else "epsilon"

        self.device_state = None

        self.pipeline: Union[None, 'StableDiffusionPipeline',
                             'CustomStableDiffusionXLPipeline', 'PixArtAlphaPipeline']
        self.vae: Union[None, 'AutoencoderKL']
        self.model: Union[None, 'Transformer2DModel', 'UNet2DConditionModel']
        self.text_encoder: Union[None, 'CLIPTextModel',
                                 List[Union['CLIPTextModel', 'CLIPTextModelWithProjection']]]
        self.tokenizer: Union[None, 'CLIPTokenizer', List['CLIPTokenizer']]
        self.noise_scheduler: Union[None, 'DDPMScheduler'] = noise_scheduler

        self.refiner_unet: Union[None, 'UNet2DConditionModel'] = None
        self.assistant_lora: Union[None, 'LoRASpecialNetwork'] = None

        # sdxl stuff
        self.logit_scale = None
        self.ckppt_info = None
        self.is_loaded = False

        # to hold network if there is one
        self.network = None
        self.adapter: Union['ControlNetModel', 'T2IAdapter',
                            'IPAdapter', 'ReferenceAdapter', None] = None
        self.decorator: Union[Decorator, None] = None
        self.arch: ModelArch = model_config.arch

        self.use_text_encoder_1 = model_config.use_text_encoder_1
        self.use_text_encoder_2 = model_config.use_text_encoder_2

        self.config_file = None

        self.is_flow_matching = False

        self.quantize_device = self.device_torch
        self.low_vram = self.model_config.low_vram

        # merge in and preview active with -1 weight
        self.invert_assistant_lora = False
        self._after_sample_img_hooks = []
        self._status_update_hooks = []
        self.is_transformer = False

    # properties for old arch for backwards compatibility
    @property
    def unet(self):
        return self.model
    
    # set unet to model
    @unet.setter
    def unet(self, value):
        self.model = value
        
    @property
    def transformer(self):
        return self.model
    
    @transformer.setter
    def transformer(self, value):
        self.model = value

    @property
    def unet_unwrapped(self):
        return unwrap_model(self.model)

    @property
    def model_unwrapped(self):
        return unwrap_model(self.model)

    @property
    def is_xl(self):
        return self.arch == 'sdxl'

    @property
    def is_v2(self):
        return self.arch == 'sd2'

    @property
    def is_ssd(self):
        return self.arch == 'ssd'

    @property
    def is_v3(self):
        return self.arch == 'sd3'

    @property
    def is_vega(self):
        return self.arch == 'vega'

    @property
    def is_pixart(self):
        return self.arch == 'pixart'

    @property
    def is_auraflow(self):
        return self.arch == 'auraflow'

    @property
    def is_flux(self):
        return self.arch == 'flux'

    @property
    def is_lumina2(self):
        return self.arch == 'lumina2'

    def get_bucket_divisibility(self):
        if self.vae is None:
            return 8
        try:
            divisibility = 2 ** (len(self.vae.config['block_out_channels']) - 1)
        except:
            # if we have a custom vae, it might not have this
            divisibility = 8
        
        # flux packs this again,
        if self.is_flux:
            divisibility = divisibility * 2
        return divisibility

    # these must be implemented in child classes
    def load_model(self):
        # override this in child classes
        raise NotImplementedError(
            "load_model must be implemented in child classes")

    def get_generation_pipeline(self):
        # override this in child classes
        raise NotImplementedError(
            "get_generation_pipeline must be implemented in child classes")

    def generate_single_image(
        self,
        pipeline,
        gen_config: GenerateImageConfig,
        conditional_embeds: PromptEmbeds,
        unconditional_embeds: PromptEmbeds,
        generator: torch.Generator,
        extra: dict,
    ):
        # override this in child classes
        raise NotImplementedError(
            "generate_single_image must be implemented in child classes")

    def get_noise_prediction(
        latent_model_input: torch.Tensor,
        timestep: torch.Tensor,  # 0 to 1000 scale
        text_embeddings: PromptEmbeds,
        **kwargs
    ):
        raise NotImplementedError(
            "get_noise_prediction must be implemented in child classes")

    def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
        raise NotImplementedError(
            "get_prompt_embeds must be implemented in child classes")
        
    def get_model_has_grad(self):
        raise NotImplementedError(
            "get_model_has_grad must be implemented in child classes")
    
    def get_te_has_grad(self):
        raise NotImplementedError(
            "get_te_has_grad must be implemented in child classes")
        
    def save_model(self, output_path, meta, save_dtype):
        # todo handle dtype without overloading anything (vram, cpu, etc)
        unwrap_model(self.pipeline).save_pretrained(
            save_directory=output_path,
            safe_serialization=True,
        )
        # save out meta config
        meta_path = os.path.join(output_path, 'aitk_meta.yaml')
        with open(meta_path, 'w') as f:
            yaml.dump(meta, f)
    # end must be implemented in child classes

    def te_train(self):
        if isinstance(self.text_encoder, list):
            for te in self.text_encoder:
                te.train()
        elif self.text_encoder is not None:
            self.text_encoder.train()

    def te_eval(self):
        if isinstance(self.text_encoder, list):
            for te in self.text_encoder:
                te.eval()
        elif self.text_encoder is not None:
            self.text_encoder.eval()

    def _after_sample_image(self, img_num, total_imgs):
        # process all hooks
        for hook in self._after_sample_img_hooks:
            hook(img_num, total_imgs)

    def add_after_sample_image_hook(self, func):
        self._after_sample_img_hooks.append(func)

    def _status_update(self, status: str):
        for hook in self._status_update_hooks:
            hook(status)

    def print_and_status_update(self, status: str):
        print_acc(status)
        self._status_update(status)

    def add_status_update_hook(self, func):
        self._status_update_hooks.append(func)

    @torch.no_grad()
    def generate_images(
            self,
            image_configs: List[GenerateImageConfig],
            sampler=None,
            pipeline: Union[None, StableDiffusionPipeline,
                            StableDiffusionXLPipeline] = None,
    ):
        network = unwrap_model(self.network)
        merge_multiplier = 1.0
        flush()
        # if using assistant, unfuse it
        if self.model_config.assistant_lora_path is not None:
            print_acc("Unloading assistant lora")
            if self.invert_assistant_lora:
                self.assistant_lora.is_active = True
                # move weights on to the device
                self.assistant_lora.force_to(
                    self.device_torch, self.torch_dtype)
            else:
                self.assistant_lora.is_active = False

        if self.model_config.inference_lora_path is not None:
            print_acc("Loading inference lora")
            self.assistant_lora.is_active = True
            # move weights on to the device
            self.assistant_lora.force_to(self.device_torch, self.torch_dtype)

        if network is not None:
            network.eval()
            # check if we have the same network weight for all samples. If we do, we can merge in th
            # the network to drastically speed up inference
            unique_network_weights = set(
                [x.network_multiplier for x in image_configs])
            if len(unique_network_weights) == 1 and network.can_merge_in:
                can_merge_in = True
                merge_multiplier = unique_network_weights.pop()
                network.merge_in(merge_weight=merge_multiplier)
        else:
            network = BlankNetwork()

        self.save_device_state()
        self.set_device_state_preset('generate')

        # save current seed state for training
        rng_state = torch.get_rng_state()
        cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None

        if pipeline is None:
            pipeline = self.get_generation_pipeline()
            try:
                pipeline.set_progress_bar_config(disable=True)
            except:
                pass

        start_multiplier = 1.0
        if network is not None:
            start_multiplier = network.multiplier

        # pipeline.to(self.device_torch)

        with network:
            with torch.no_grad():
                if network is not None:
                    assert network.is_active

                for i in tqdm(range(len(image_configs)), desc=f"Generating Images", leave=False):
                    gen_config = image_configs[i]

                    extra = {}
                    validation_image = None
                    if self.adapter is not None and gen_config.adapter_image_path is not None:
                        validation_image = Image.open(gen_config.adapter_image_path)
                        if ".inpaint." not in gen_config.adapter_image_path:
                            validation_image = validation_image.convert("RGB")
                        else:
                            # make sure it has an alpha
                            if validation_image.mode != "RGBA":
                                raise ValueError("Inpainting images must have an alpha channel")
                        if isinstance(self.adapter, T2IAdapter):
                            # not sure why this is double??
                            validation_image = validation_image.resize(
                                (gen_config.width * 2, gen_config.height * 2))
                            extra['image'] = validation_image
                            extra['adapter_conditioning_scale'] = gen_config.adapter_conditioning_scale
                        if isinstance(self.adapter, ControlNetModel):
                            validation_image = validation_image.resize(
                                (gen_config.width, gen_config.height))
                            extra['image'] = validation_image
                            extra['controlnet_conditioning_scale'] = gen_config.adapter_conditioning_scale
                        if isinstance(self.adapter, CustomAdapter) and self.adapter.control_lora is not None:
                            validation_image = validation_image.resize((gen_config.width, gen_config.height))
                            extra['control_image'] = validation_image
                            extra['control_image_idx'] = gen_config.ctrl_idx
                        if isinstance(self.adapter, IPAdapter) or isinstance(self.adapter, ClipVisionAdapter):
                            transform = transforms.Compose([
                                transforms.ToTensor(),
                            ])
                            validation_image = transform(validation_image)
                        if isinstance(self.adapter, CustomAdapter):
                            # todo allow loading multiple
                            transform = transforms.Compose([
                                transforms.ToTensor(),
                            ])
                            validation_image = transform(validation_image)
                            self.adapter.num_images = 1
                        if isinstance(self.adapter, ReferenceAdapter):
                            # need -1 to 1
                            validation_image = transforms.ToTensor()(validation_image)
                            validation_image = validation_image * 2.0 - 1.0
                            validation_image = validation_image.unsqueeze(0)
                            self.adapter.set_reference_images(validation_image)

                    if network is not None:
                        network.multiplier = gen_config.network_multiplier
                    torch.manual_seed(gen_config.seed)
                    torch.cuda.manual_seed(gen_config.seed)

                    generator = torch.manual_seed(gen_config.seed)

                    if self.adapter is not None and isinstance(self.adapter, ClipVisionAdapter) \
                            and gen_config.adapter_image_path is not None:
                        # run through the adapter to saturate the embeds
                        conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
                            validation_image)
                        self.adapter(conditional_clip_embeds)

                    if self.adapter is not None and isinstance(self.adapter, CustomAdapter):
                        # handle condition the prompts
                        gen_config.prompt = self.adapter.condition_prompt(
                            gen_config.prompt,
                            is_unconditional=False,
                        )
                        gen_config.prompt_2 = gen_config.prompt
                        gen_config.negative_prompt = self.adapter.condition_prompt(
                            gen_config.negative_prompt,
                            is_unconditional=True,
                        )
                        gen_config.negative_prompt_2 = gen_config.negative_prompt

                    if self.adapter is not None and isinstance(self.adapter, CustomAdapter) and validation_image is not None:
                        self.adapter.trigger_pre_te(
                            tensors_0_1=validation_image,
                            is_training=False,
                            has_been_preprocessed=False,
                            quad_count=4
                        )

                    # encode the prompt ourselves so we can do fun stuff with embeddings
                    if isinstance(self.adapter, CustomAdapter):
                        self.adapter.is_unconditional_run = False
                    conditional_embeds = self.encode_prompt(
                        gen_config.prompt, gen_config.prompt_2, force_all=True)

                    if isinstance(self.adapter, CustomAdapter):
                        self.adapter.is_unconditional_run = True
                    unconditional_embeds = self.encode_prompt(
                        gen_config.negative_prompt, gen_config.negative_prompt_2, force_all=True
                    )
                    if isinstance(self.adapter, CustomAdapter):
                        self.adapter.is_unconditional_run = False

                    # allow any manipulations to take place to embeddings
                    gen_config.post_process_embeddings(
                        conditional_embeds,
                        unconditional_embeds,
                    )

                    if self.decorator is not None:
                        # apply the decorator to the embeddings
                        conditional_embeds.text_embeds = self.decorator(
                            conditional_embeds.text_embeds)
                        unconditional_embeds.text_embeds = self.decorator(
                            unconditional_embeds.text_embeds, is_unconditional=True)

                    if self.adapter is not None and isinstance(self.adapter, IPAdapter) \
                            and gen_config.adapter_image_path is not None:
                        # apply the image projection
                        conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
                            validation_image)
                        unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(validation_image,
                                                                                                    True)
                        conditional_embeds = self.adapter(
                            conditional_embeds, conditional_clip_embeds, is_unconditional=False)
                        unconditional_embeds = self.adapter(
                            unconditional_embeds, unconditional_clip_embeds, is_unconditional=True)

                    if self.adapter is not None and isinstance(self.adapter, CustomAdapter):
                        conditional_embeds = self.adapter.condition_encoded_embeds(
                            tensors_0_1=validation_image,
                            prompt_embeds=conditional_embeds,
                            is_training=False,
                            has_been_preprocessed=False,
                            is_generating_samples=True,
                        )
                        unconditional_embeds = self.adapter.condition_encoded_embeds(
                            tensors_0_1=validation_image,
                            prompt_embeds=unconditional_embeds,
                            is_training=False,
                            has_been_preprocessed=False,
                            is_unconditional=True,
                            is_generating_samples=True,
                        )

                    if self.adapter is not None and isinstance(self.adapter, CustomAdapter) and len(
                            gen_config.extra_values) > 0:
                        extra_values = torch.tensor([gen_config.extra_values], device=self.device_torch,
                                                    dtype=self.torch_dtype)
                        # apply extra values to the embeddings
                        self.adapter.add_extra_values(
                            extra_values, is_unconditional=False)
                        self.adapter.add_extra_values(torch.zeros_like(
                            extra_values), is_unconditional=True)
                        pass  # todo remove, for debugging

                    if self.refiner_unet is not None and gen_config.refiner_start_at < 1.0:
                        # if we have a refiner loaded, set the denoising end at the refiner start
                        extra['denoising_end'] = gen_config.refiner_start_at
                        extra['output_type'] = 'latent'
                        if not self.is_xl:
                            raise ValueError(
                                "Refiner is only supported for XL models")

                    conditional_embeds = conditional_embeds.to(
                        self.device_torch, dtype=self.unet.dtype)
                    unconditional_embeds = unconditional_embeds.to(
                        self.device_torch, dtype=self.unet.dtype)

                    img = self.generate_single_image(
                        pipeline,
                        gen_config,
                        conditional_embeds,
                        unconditional_embeds,
                        generator,
                        extra,
                    )

                    gen_config.save_image(img, i)
                    gen_config.log_image(img, i)
                    self._after_sample_image(i, len(image_configs))
                    flush()

                if self.adapter is not None and isinstance(self.adapter, ReferenceAdapter):
                    self.adapter.clear_memory()

        # clear pipeline and cache to reduce vram usage
        del pipeline
        torch.cuda.empty_cache()

        # restore training state
        torch.set_rng_state(rng_state)
        if cuda_rng_state is not None:
            torch.cuda.set_rng_state(cuda_rng_state)

        self.restore_device_state()
        if network is not None:
            network.train()
            network.multiplier = start_multiplier

        self.unet.to(self.device_torch, dtype=self.torch_dtype)
        if network.is_merged_in:
            network.merge_out(merge_multiplier)
        # self.tokenizer.to(original_device_dict['tokenizer'])

        # refuse loras
        if self.model_config.assistant_lora_path is not None:
            print_acc("Loading assistant lora")
            if self.invert_assistant_lora:
                self.assistant_lora.is_active = False
                # move weights off the device
                self.assistant_lora.force_to('cpu', self.torch_dtype)
            else:
                self.assistant_lora.is_active = True

        if self.model_config.inference_lora_path is not None:
            print_acc("Unloading inference lora")
            self.assistant_lora.is_active = False
            # move weights off the device
            self.assistant_lora.force_to('cpu', self.torch_dtype)
        flush()

    def get_latent_noise(
            self,
            height=None,
            width=None,
            pixel_height=None,
            pixel_width=None,
            batch_size=1,
            noise_offset=0.0,
    ):
        VAE_SCALE_FACTOR = 2 ** (
            len(self.vae.config['block_out_channels']) - 1)
        if height is None and pixel_height is None:
            raise ValueError("height or pixel_height must be specified")
        if width is None and pixel_width is None:
            raise ValueError("width or pixel_width must be specified")
        if height is None:
            height = pixel_height // VAE_SCALE_FACTOR
        if width is None:
            width = pixel_width // VAE_SCALE_FACTOR

        num_channels = self.unet_unwrapped.config['in_channels']
        if self.is_flux:
            # has 64 channels in for some reason
            num_channels = 16
        noise = torch.randn(
            (
                batch_size,
                num_channels,
                height,
                width,
            ),
            device=self.unet.device,
        )
        noise = apply_noise_offset(noise, noise_offset)
        return noise
    
    def get_latent_noise_from_latents(
        self,
        latents: torch.Tensor,
        noise_offset=0.0
    ):
        noise = torch.randn_like(latents)
        noise = apply_noise_offset(noise, noise_offset)
        return noise

    def add_noise(
            self,
            original_samples: torch.FloatTensor,
            noise: torch.FloatTensor,
            timesteps: torch.IntTensor,
            **kwargs,
    ) -> torch.FloatTensor:
        original_samples_chunks = torch.chunk(
            original_samples, original_samples.shape[0], dim=0)
        noise_chunks = torch.chunk(noise, noise.shape[0], dim=0)
        timesteps_chunks = torch.chunk(timesteps, timesteps.shape[0], dim=0)

        if len(timesteps_chunks) == 1 and len(timesteps_chunks) != len(original_samples_chunks):
            timesteps_chunks = [timesteps_chunks[0]] * \
                len(original_samples_chunks)

        noisy_latents_chunks = []

        for idx in range(original_samples.shape[0]):
            noisy_latents = self.noise_scheduler.add_noise(original_samples_chunks[idx], noise_chunks[idx],
                                                           timesteps_chunks[idx])
            noisy_latents_chunks.append(noisy_latents)

        noisy_latents = torch.cat(noisy_latents_chunks, dim=0)
        return noisy_latents

    def predict_noise(
            self,
            latents: torch.Tensor,
            text_embeddings: Union[PromptEmbeds, None] = None,
            timestep: Union[int, torch.Tensor] = 1,
            guidance_scale=7.5,
            guidance_rescale=0,
            add_time_ids=None,
            conditional_embeddings: Union[PromptEmbeds, None] = None,
            unconditional_embeddings: Union[PromptEmbeds, None] = None,
            is_input_scaled=False,
            detach_unconditional=False,
            rescale_cfg=None,
            return_conditional_pred=False,
            guidance_embedding_scale=1.0,
            bypass_guidance_embedding=False,
            batch: Union[None, 'DataLoaderBatchDTO'] = None,
            **kwargs,
    ):
        conditional_pred = None
        # get the embeddings
        if text_embeddings is None and conditional_embeddings is None:
            raise ValueError(
                "Either text_embeddings or conditional_embeddings must be specified")
        if text_embeddings is None and unconditional_embeddings is not None:
            text_embeddings = concat_prompt_embeds([
                unconditional_embeddings,  # negative embedding
                conditional_embeddings,  # positive embedding
            ])
        elif text_embeddings is None and conditional_embeddings is not None:
            # not doing cfg
            text_embeddings = conditional_embeddings

        # CFG is comparing neg and positive, if we have concatenated embeddings
        # then we are doing it, otherwise we are not and takes half the time.
        do_classifier_free_guidance = True

        # check if batch size of embeddings matches batch size of latents
        if isinstance(text_embeddings.text_embeds, list):
            te_batch_size = text_embeddings.text_embeds[0].shape[0]
        else:
            te_batch_size = text_embeddings.text_embeds.shape[0]
        if latents.shape[0] == te_batch_size:
            do_classifier_free_guidance = False
        elif latents.shape[0] * 2 != te_batch_size:
            raise ValueError(
                "Batch size of latents must be the same or half the batch size of text embeddings")
        latents = latents.to(self.device_torch)
        text_embeddings = text_embeddings.to(self.device_torch)
        timestep = timestep.to(self.device_torch)

        # if timestep is zero dim, unsqueeze it
        if len(timestep.shape) == 0:
            timestep = timestep.unsqueeze(0)

        # if we only have 1 timestep, we can just use the same timestep for all
        if timestep.shape[0] == 1 and latents.shape[0] > 1:
            # check if it is rank 1 or 2
            if len(timestep.shape) == 1:
                timestep = timestep.repeat(latents.shape[0])
            else:
                timestep = timestep.repeat(latents.shape[0], 0)

        # handle t2i adapters
        if 'down_intrablock_additional_residuals' in kwargs:
            # go through each item and concat if doing cfg and it doesnt have the same shape
            for idx, item in enumerate(kwargs['down_intrablock_additional_residuals']):
                if do_classifier_free_guidance and item.shape[0] != text_embeddings.text_embeds.shape[0]:
                    kwargs['down_intrablock_additional_residuals'][idx] = torch.cat([
                                                                                    item] * 2, dim=0)

        # handle controlnet
        if 'down_block_additional_residuals' in kwargs and 'mid_block_additional_residual' in kwargs:
            # go through each item and concat if doing cfg and it doesnt have the same shape
            for idx, item in enumerate(kwargs['down_block_additional_residuals']):
                if do_classifier_free_guidance and item.shape[0] != text_embeddings.text_embeds.shape[0]:
                    kwargs['down_block_additional_residuals'][idx] = torch.cat([
                                                                               item] * 2, dim=0)
            for idx, item in enumerate(kwargs['mid_block_additional_residual']):
                if do_classifier_free_guidance and item.shape[0] != text_embeddings.text_embeds.shape[0]:
                    kwargs['mid_block_additional_residual'][idx] = torch.cat(
                        [item] * 2, dim=0)

        def scale_model_input(model_input, timestep_tensor):
            if is_input_scaled:
                return model_input
            mi_chunks = torch.chunk(model_input, model_input.shape[0], dim=0)
            timestep_chunks = torch.chunk(
                timestep_tensor, timestep_tensor.shape[0], dim=0)
            out_chunks = []
            # unsqueeze if timestep is zero dim
            for idx in range(model_input.shape[0]):
                # if scheduler has step_index
                if hasattr(self.noise_scheduler, '_step_index'):
                    self.noise_scheduler._step_index = None
                out_chunks.append(
                    self.noise_scheduler.scale_model_input(
                        mi_chunks[idx], timestep_chunks[idx])
                )
            return torch.cat(out_chunks, dim=0)

        with torch.no_grad():
            if do_classifier_free_guidance:
                # if we are doing classifier free guidance, need to double up
                latent_model_input = torch.cat([latents] * 2, dim=0)
                timestep = torch.cat([timestep] * 2)
            else:
                latent_model_input = latents

            latent_model_input = scale_model_input(
                latent_model_input, timestep)

            # check if we need to concat timesteps
            if isinstance(timestep, torch.Tensor) and len(timestep.shape) > 1:
                ts_bs = timestep.shape[0]
                if ts_bs != latent_model_input.shape[0]:
                    if ts_bs == 1:
                        timestep = torch.cat(
                            [timestep] * latent_model_input.shape[0])
                    elif ts_bs * 2 == latent_model_input.shape[0]:
                        timestep = torch.cat([timestep] * 2, dim=0)
                    else:
                        raise ValueError(
                            f"Batch size of latents {latent_model_input.shape[0]} must be the same or half the batch size of timesteps {timestep.shape[0]}")

        # predict the noise residual
        if self.unet.device != self.device_torch:
            self.unet.to(self.device_torch)
        if self.unet.dtype != self.torch_dtype:
            self.unet = self.unet.to(dtype=self.torch_dtype)
            
        # check if get_noise prediction has guidance_embedding_scale
        # if it does not, we dont pass it
        signatures =  inspect.signature(self.get_noise_prediction).parameters
        
        if 'guidance_embedding_scale' in signatures:
            kwargs['guidance_embedding_scale'] = guidance_embedding_scale
        if 'bypass_guidance_embedding' in signatures:
            kwargs['bypass_guidance_embedding'] = bypass_guidance_embedding
        if 'batch' in signatures:
            kwargs['batch'] = batch

        noise_pred = self.get_noise_prediction(
            latent_model_input=latent_model_input,
            timestep=timestep,
            text_embeddings=text_embeddings,
            **kwargs
        )

        conditional_pred = noise_pred

        if do_classifier_free_guidance:
            # perform guidance
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2, dim=0)
            conditional_pred = noise_pred_text
            if detach_unconditional:
                noise_pred_uncond = noise_pred_uncond.detach()
            noise_pred = noise_pred_uncond + guidance_scale * (
                noise_pred_text - noise_pred_uncond
            )
            if rescale_cfg is not None and rescale_cfg != guidance_scale:
                with torch.no_grad():
                    # do cfg at the target rescale so we can match it
                    target_pred_mean_std = noise_pred_uncond + rescale_cfg * (
                        noise_pred_text - noise_pred_uncond
                    )
                    target_mean = target_pred_mean_std.mean(
                        [1, 2, 3], keepdim=True).detach()
                    target_std = target_pred_mean_std.std(
                        [1, 2, 3], keepdim=True).detach()

                    pred_mean = noise_pred.mean(
                        [1, 2, 3], keepdim=True).detach()
                    pred_std = noise_pred.std([1, 2, 3], keepdim=True).detach()

                # match the mean and std
                noise_pred = (noise_pred - pred_mean) / pred_std
                noise_pred = (noise_pred * target_std) + target_mean

            # https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
            if guidance_rescale > 0.0:
                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                noise_pred = rescale_noise_cfg(
                    noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

        if return_conditional_pred:
            return noise_pred, conditional_pred
        return noise_pred

    def step_scheduler(self, model_input, latent_input, timestep_tensor, noise_scheduler=None):
        if noise_scheduler is None:
            noise_scheduler = self.noise_scheduler
        # // sometimes they are on the wrong device, no idea why
        if isinstance(noise_scheduler, DDPMScheduler) or isinstance(noise_scheduler, LCMScheduler):
            try:
                noise_scheduler.betas = noise_scheduler.betas.to(
                    self.device_torch)
                noise_scheduler.alphas = noise_scheduler.alphas.to(
                    self.device_torch)
                noise_scheduler.alphas_cumprod = noise_scheduler.alphas_cumprod.to(
                    self.device_torch)
            except Exception as e:
                pass

        mi_chunks = torch.chunk(model_input, model_input.shape[0], dim=0)
        latent_chunks = torch.chunk(latent_input, latent_input.shape[0], dim=0)
        timestep_chunks = torch.chunk(
            timestep_tensor, timestep_tensor.shape[0], dim=0)
        out_chunks = []
        if len(timestep_chunks) == 1 and len(mi_chunks) > 1:
            # expand timestep to match
            timestep_chunks = timestep_chunks * len(mi_chunks)

        for idx in range(model_input.shape[0]):
            # Reset it so it is unique for the
            if hasattr(noise_scheduler, '_step_index'):
                noise_scheduler._step_index = None
            if hasattr(noise_scheduler, 'is_scale_input_called'):
                noise_scheduler.is_scale_input_called = True
            out_chunks.append(
                noise_scheduler.step(mi_chunks[idx], timestep_chunks[idx], latent_chunks[idx], return_dict=False)[
                    0]
            )
        return torch.cat(out_chunks, dim=0)

    # ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L746
    def diffuse_some_steps(
            self,
            latents: torch.FloatTensor,
            text_embeddings: PromptEmbeds,
            total_timesteps: int = 1000,
            start_timesteps=0,
            guidance_scale=1,
            add_time_ids=None,
            bleed_ratio: float = 0.5,
            bleed_latents: torch.FloatTensor = None,
            is_input_scaled=False,
            return_first_prediction=False,
            **kwargs,
    ):
        timesteps_to_run = self.noise_scheduler.timesteps[start_timesteps:total_timesteps]

        first_prediction = None

        for timestep in tqdm(timesteps_to_run, leave=False):
            timestep = timestep.unsqueeze_(0)
            noise_pred, conditional_pred = self.predict_noise(
                latents,
                text_embeddings,
                timestep,
                guidance_scale=guidance_scale,
                add_time_ids=add_time_ids,
                is_input_scaled=is_input_scaled,
                return_conditional_pred=True,
                **kwargs,
            )
            # some schedulers need to run separately, so do that. (euler for example)

            if return_first_prediction and first_prediction is None:
                first_prediction = conditional_pred

            latents = self.step_scheduler(noise_pred, latents, timestep)

            # if not last step, and bleeding, bleed in some latents
            if bleed_latents is not None and timestep != self.noise_scheduler.timesteps[-1]:
                latents = (latents * (1 - bleed_ratio)) + \
                    (bleed_latents * bleed_ratio)

            # only skip first scaling
            is_input_scaled = False

        # return latents_steps
        if return_first_prediction:
            return latents, first_prediction
        return latents

    def encode_prompt(
            self,
            prompt,
            prompt2=None,
            num_images_per_prompt=1,
            force_all=False,
            long_prompts=False,
            max_length=None,
            dropout_prob=0.0,
    ) -> PromptEmbeds:
        # sd1.5 embeddings are (bs, 77, 768)
        prompt = prompt
        # if it is not a list, make it one
        if not isinstance(prompt, list):
            prompt = [prompt]

        if prompt2 is not None and not isinstance(prompt2, list):
            prompt2 = [prompt2]

        return self.get_prompt_embeds(prompt)

    @torch.no_grad()
    def encode_images(
            self,
            image_list: List[torch.Tensor],
            device=None,
            dtype=None
    ):
        if device is None:
            device = self.vae_device_torch
        if dtype is None:
            dtype = self.vae_torch_dtype

        latent_list = []
        # Move to vae to device if on cpu
        if self.vae.device == 'cpu':
            self.vae.to(device)
        self.vae.eval()
        self.vae.requires_grad_(False)
        # move to device and dtype
        image_list = [image.to(device, dtype=dtype) for image in image_list]

        VAE_SCALE_FACTOR = 2 ** (
            len(self.vae.config['block_out_channels']) - 1)

        # resize images if not divisible by 8
        for i in range(len(image_list)):
            image = image_list[i]
            if image.shape[1] % VAE_SCALE_FACTOR != 0 or image.shape[2] % VAE_SCALE_FACTOR != 0:
                image_list[i] = Resize((image.shape[1] // VAE_SCALE_FACTOR * VAE_SCALE_FACTOR,
                                        image.shape[2] // VAE_SCALE_FACTOR * VAE_SCALE_FACTOR))(image)

        images = torch.stack(image_list)
        if isinstance(self.vae, AutoencoderTiny):
            latents = self.vae.encode(images, return_dict=False)[0]
        else:
            latents = self.vae.encode(images).latent_dist.sample()
        shift = self.vae.config['shift_factor'] if self.vae.config['shift_factor'] is not None else 0

        # flux ref https://github.com/black-forest-labs/flux/blob/c23ae247225daba30fbd56058d247cc1b1fc20a3/src/flux/modules/autoencoder.py#L303
        # z = self.scale_factor * (z - self.shift_factor)
        latents = self.vae.config['scaling_factor'] * (latents - shift)
        latents = latents.to(device, dtype=dtype)

        return latents

    def decode_latents(
            self,
            latents: torch.Tensor,
            device=None,
            dtype=None
    ):
        if device is None:
            device = self.device
        if dtype is None:
            dtype = self.torch_dtype

        # Move to vae to device if on cpu
        if self.vae.device == 'cpu':
            self.vae.to(self.device)
        latents = latents.to(device, dtype=dtype)
        latents = (
            latents / self.vae.config['scaling_factor']) + self.vae.config['shift_factor']
        images = self.vae.decode(latents).sample
        images = images.to(device, dtype=dtype)

        return images

    def encode_image_prompt_pairs(
            self,
            prompt_list: List[str],
            image_list: List[torch.Tensor],
            device=None,
            dtype=None
    ):
        # todo check image types and expand and rescale as needed
        # device and dtype are for outputs
        if device is None:
            device = self.device
        if dtype is None:
            dtype = self.torch_dtype

        embedding_list = []
        latent_list = []
        # embed the prompts
        for prompt in prompt_list:
            embedding = self.encode_prompt(prompt).to(
                self.device_torch, dtype=dtype)
            embedding_list.append(embedding)

        return embedding_list, latent_list

    def get_weight_by_name(self, name):
        # weights begin with te{te_num}_ for text encoder
        # weights begin with unet_ for unet_
        if name.startswith('te'):
            key = name[4:]
            # text encoder
            te_num = int(name[2])
            if isinstance(self.text_encoder, list):
                return self.text_encoder[te_num].state_dict()[key]
            else:
                return self.text_encoder.state_dict()[key]
        elif name.startswith('unet'):
            key = name[5:]
            # unet
            return self.unet.state_dict()[key]

        raise ValueError(f"Unknown weight name: {name}")

    def inject_trigger_into_prompt(self, prompt, trigger=None, to_replace_list=None, add_if_not_present=False):
        return inject_trigger_into_prompt(
            prompt,
            trigger=trigger,
            to_replace_list=to_replace_list,
            add_if_not_present=add_if_not_present,
        )

    def state_dict(self, vae=True, text_encoder=True, unet=True):
        state_dict = OrderedDict()
        if vae:
            for k, v in self.vae.state_dict().items():
                new_key = k if k.startswith(
                    f"{SD_PREFIX_VAE}") else f"{SD_PREFIX_VAE}_{k}"
                state_dict[new_key] = v
        if text_encoder:
            if isinstance(self.text_encoder, list):
                for i, encoder in enumerate(self.text_encoder):
                    for k, v in encoder.state_dict().items():
                        new_key = k if k.startswith(
                            f"{SD_PREFIX_TEXT_ENCODER}{i}_") else f"{SD_PREFIX_TEXT_ENCODER}{i}_{k}"
                        state_dict[new_key] = v
            else:
                for k, v in self.text_encoder.state_dict().items():
                    new_key = k if k.startswith(
                        f"{SD_PREFIX_TEXT_ENCODER}_") else f"{SD_PREFIX_TEXT_ENCODER}_{k}"
                    state_dict[new_key] = v
        if unet:
            for k, v in self.unet.state_dict().items():
                new_key = k if k.startswith(
                    f"{SD_PREFIX_UNET}_") else f"{SD_PREFIX_UNET}_{k}"
                state_dict[new_key] = v
        return state_dict

    def named_parameters(self, vae=True, text_encoder=True, unet=True, refiner=False, state_dict_keys=False) -> \
            OrderedDict[
                str, Parameter]:
        named_params: OrderedDict[str, Parameter] = OrderedDict()
        if vae:
            for name, param in self.vae.named_parameters(recurse=True, prefix=f"{SD_PREFIX_VAE}"):
                named_params[name] = param
        if text_encoder:
            if isinstance(self.text_encoder, list):
                for i, encoder in enumerate(self.text_encoder):
                    if self.is_xl and not self.model_config.use_text_encoder_1 and i == 0:
                        # dont add these params
                        continue
                    if self.is_xl and not self.model_config.use_text_encoder_2 and i == 1:
                        # dont add these params
                        continue

                    for name, param in encoder.named_parameters(recurse=True, prefix=f"{SD_PREFIX_TEXT_ENCODER}{i}"):
                        named_params[name] = param
            else:
                for name, param in self.text_encoder.named_parameters(recurse=True, prefix=f"{SD_PREFIX_TEXT_ENCODER}"):
                    named_params[name] = param
        if unet:
            if self.is_flux or self.is_lumina2 or self.is_transformer:
                for name, param in self.unet.named_parameters(recurse=True, prefix="transformer"):
                    named_params[name] = param
            else:
                for name, param in self.unet.named_parameters(recurse=True, prefix=f"{SD_PREFIX_UNET}"):
                    named_params[name] = param

            if self.model_config.ignore_if_contains is not None:
                # remove params that contain the ignore_if_contains from named params
                for key in list(named_params.keys()):
                    if any([s in key for s in self.model_config.ignore_if_contains]):
                        del named_params[key]
            if self.model_config.only_if_contains is not None:
                # remove params that do not contain the only_if_contains from named params
                for key in list(named_params.keys()):
                    if not any([s in key for s in self.model_config.only_if_contains]):
                        del named_params[key]

        if refiner:
            for name, param in self.refiner_unet.named_parameters(recurse=True, prefix=f"{SD_PREFIX_REFINER_UNET}"):
                named_params[name] = param

        # convert to state dict keys, jsut replace . with _ on keys
        if state_dict_keys:
            new_named_params = OrderedDict()
            for k, v in named_params.items():
                # replace only the first . with an _
                new_key = k.replace('.', '_', 1)
                new_named_params[new_key] = v
            named_params = new_named_params

        return named_params

    def save(self, output_file: str, meta: OrderedDict, save_dtype=get_torch_dtype('fp16'), logit_scale=None):
        self.save_model(
            output_path=output_file,
            meta=meta,
            save_dtype=save_dtype
        )

    def prepare_optimizer_params(
            self,
            unet=False,
            text_encoder=False,
            text_encoder_lr=None,
            unet_lr=None,
            refiner_lr=None,
            refiner=False,
            default_lr=1e-6,
    ):
        # todo maybe only get locon ones?
        # not all items are saved, to make it match, we need to match out save mappings
        # and not train anything not mapped. Also add learning rate
        version = 'sd1'
        if self.is_xl:
            version = 'sdxl'
        if self.is_v2:
            version = 'sd2'
        mapping_filename = f"stable_diffusion_{version}.json"
        mapping_path = os.path.join(KEYMAPS_ROOT, mapping_filename)
        with open(mapping_path, 'r') as f:
            mapping = json.load(f)
        ldm_diffusers_keymap = mapping['ldm_diffusers_keymap']

        trainable_parameters = []

        # we use state dict to find params

        if unet:
            named_params = self.named_parameters(
                vae=False, unet=unet, text_encoder=False, state_dict_keys=True)
            unet_lr = unet_lr if unet_lr is not None else default_lr
            params = []
            for param in named_params.values():
                if param.requires_grad:
                    params.append(param)
           
            param_data = {"params": params, "lr": unet_lr}
            trainable_parameters.append(param_data)
            print_acc(f"Found {len(params)} trainable parameter in unet")

        if text_encoder:
            named_params = self.named_parameters(
                vae=False, unet=False, text_encoder=text_encoder, state_dict_keys=True)
            text_encoder_lr = text_encoder_lr if text_encoder_lr is not None else default_lr
            params = []
            for key, diffusers_key in ldm_diffusers_keymap.items():
                if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
                    if named_params[diffusers_key].requires_grad:
                        params.append(named_params[diffusers_key])
            param_data = {"params": params, "lr": text_encoder_lr}
            trainable_parameters.append(param_data)

            print_acc(
                f"Found {len(params)} trainable parameter in text encoder")

        if refiner:
            named_params = self.named_parameters(vae=False, unet=False, text_encoder=False, refiner=True,
                                                 state_dict_keys=True)
            refiner_lr = refiner_lr if refiner_lr is not None else default_lr
            params = []
            for key, diffusers_key in ldm_diffusers_keymap.items():
                diffusers_key = f"refiner_{diffusers_key}"
                if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
                    if named_params[diffusers_key].requires_grad:
                        params.append(named_params[diffusers_key])
            param_data = {"params": params, "lr": refiner_lr}
            trainable_parameters.append(param_data)

            print_acc(f"Found {len(params)} trainable parameter in refiner")

        return trainable_parameters

    def save_device_state(self):
        # saves the current device state for all modules
        # this is useful for when we want to alter the state and restore it
        unet_has_grad = self.get_model_has_grad()

        self.device_state = {
            **empty_preset,
            'vae': {
                'training': self.vae.training,
                'device': self.vae.device,
            },
            'unet': {
                'training': self.unet.training,
                'device': self.unet.device,
                'requires_grad': unet_has_grad,
            },
        }
        if isinstance(self.text_encoder, list):
            self.device_state['text_encoder']: List[dict] = []
            for encoder in self.text_encoder:
                te_has_grad = self.get_te_has_grad()
                self.device_state['text_encoder'].append({
                    'training': encoder.training,
                    'device': encoder.device,
                    # todo there has to be a better way to do this
                    'requires_grad': te_has_grad
                })
        else:
            te_has_grad = self.get_te_has_grad()

            self.device_state['text_encoder'] = {
                'training': self.text_encoder.training,
                'device': self.text_encoder.device,
                'requires_grad': te_has_grad
            }
        if self.adapter is not None:
            if isinstance(self.adapter, IPAdapter):
                requires_grad = self.adapter.image_proj_model.training
                adapter_device = self.unet.device
            elif isinstance(self.adapter, T2IAdapter):
                requires_grad = self.adapter.adapter.conv_in.weight.requires_grad
                adapter_device = self.adapter.device
            elif isinstance(self.adapter, ControlNetModel):
                requires_grad = self.adapter.conv_in.training
                adapter_device = self.adapter.device
            elif isinstance(self.adapter, ClipVisionAdapter):
                requires_grad = self.adapter.embedder.training
                adapter_device = self.adapter.device
            elif isinstance(self.adapter, CustomAdapter):
                requires_grad = self.adapter.training
                adapter_device = self.adapter.device
            elif isinstance(self.adapter, ReferenceAdapter):
                # todo update this!!
                requires_grad = True
                adapter_device = self.adapter.device
            else:
                raise ValueError(f"Unknown adapter type: {type(self.adapter)}")
            self.device_state['adapter'] = {
                'training': self.adapter.training,
                'device': adapter_device,
                'requires_grad': requires_grad,
            }

        if self.refiner_unet is not None:
            self.device_state['refiner_unet'] = {
                'training': self.refiner_unet.training,
                'device': self.refiner_unet.device,
                'requires_grad': self.refiner_unet.conv_in.weight.requires_grad,
            }

    def restore_device_state(self):
        # restores the device state for all modules
        # this is useful for when we want to alter the state and restore it
        if self.device_state is None:
            return
        self.set_device_state(self.device_state)
        self.device_state = None

    def set_device_state(self, state):
        if state['vae']['training']:
            self.vae.train()
        else:
            self.vae.eval()
        self.vae.to(state['vae']['device'])
        if state['unet']['training']:
            self.unet.train()
        else:
            self.unet.eval()
        self.unet.to(state['unet']['device'])
        if state['unet']['requires_grad']:
            self.unet.requires_grad_(True)
        else:
            self.unet.requires_grad_(False)
        if isinstance(self.text_encoder, list):
            for i, encoder in enumerate(self.text_encoder):
                if isinstance(state['text_encoder'], list):
                    if state['text_encoder'][i]['training']:
                        encoder.train()
                    else:
                        encoder.eval()
                    encoder.to(state['text_encoder'][i]['device'])
                    encoder.requires_grad_(
                        state['text_encoder'][i]['requires_grad'])
                else:
                    if state['text_encoder']['training']:
                        encoder.train()
                    else:
                        encoder.eval()
                    encoder.to(state['text_encoder']['device'])
                    encoder.requires_grad_(
                        state['text_encoder']['requires_grad'])
        else:
            if state['text_encoder']['training']:
                self.text_encoder.train()
            else:
                self.text_encoder.eval()
            self.text_encoder.to(state['text_encoder']['device'])
            self.text_encoder.requires_grad_(
                state['text_encoder']['requires_grad'])

        if self.adapter is not None:
            self.adapter.to(state['adapter']['device'])
            self.adapter.requires_grad_(state['adapter']['requires_grad'])
            if state['adapter']['training']:
                self.adapter.train()
            else:
                self.adapter.eval()

        if self.refiner_unet is not None:
            self.refiner_unet.to(state['refiner_unet']['device'])
            self.refiner_unet.requires_grad_(
                state['refiner_unet']['requires_grad'])
            if state['refiner_unet']['training']:
                self.refiner_unet.train()
            else:
                self.refiner_unet.eval()
        flush()

    def set_device_state_preset(self, device_state_preset: DeviceStatePreset):
        # sets a preset for device state

        # save current state first
        self.save_device_state()

        active_modules = []
        training_modules = []
        if device_state_preset in ['cache_latents']:
            active_modules = ['vae']
        if device_state_preset in ['cache_clip']:
            active_modules = ['clip']
        if device_state_preset in ['generate']:
            active_modules = ['vae', 'unet',
                              'text_encoder', 'adapter', 'refiner_unet']

        state = copy.deepcopy(empty_preset)
        # vae
        state['vae'] = {
            'training': 'vae' in training_modules,
            'device': self.vae_device_torch if 'vae' in active_modules else 'cpu',
            'requires_grad': 'vae' in training_modules,
        }

        # unet
        state['unet'] = {
            'training': 'unet' in training_modules,
            'device': self.device_torch if 'unet' in active_modules else 'cpu',
            'requires_grad': 'unet' in training_modules,
        }

        if self.refiner_unet is not None:
            state['refiner_unet'] = {
                'training': 'refiner_unet' in training_modules,
                'device': self.device_torch if 'refiner_unet' in active_modules else 'cpu',
                'requires_grad': 'refiner_unet' in training_modules,
            }

        # text encoder
        if isinstance(self.text_encoder, list):
            state['text_encoder'] = []
            for i, encoder in enumerate(self.text_encoder):
                state['text_encoder'].append({
                    'training': 'text_encoder' in training_modules,
                    'device': self.te_device_torch if 'text_encoder' in active_modules else 'cpu',
                    'requires_grad': 'text_encoder' in training_modules,
                })
        else:
            state['text_encoder'] = {
                'training': 'text_encoder' in training_modules,
                'device': self.te_device_torch if 'text_encoder' in active_modules else 'cpu',
                'requires_grad': 'text_encoder' in training_modules,
            }

        if self.adapter is not None:
            state['adapter'] = {
                'training': 'adapter' in training_modules,
                'device': self.device_torch if 'adapter' in active_modules else 'cpu',
                'requires_grad': 'adapter' in training_modules,
            }

        self.set_device_state(state)

    def text_encoder_to(self, *args, **kwargs):
        if isinstance(self.text_encoder, list):
            for encoder in self.text_encoder:
                encoder.to(*args, **kwargs)
        else:
            self.text_encoder.to(*args, **kwargs)
    
    def convert_lora_weights_before_save(self, state_dict):
        # can be overridden in child classes to convert weights before saving
        return state_dict
    
    def convert_lora_weights_before_load(self, state_dict):
        # can be overridden in child classes to convert weights before loading
        return state_dict
    
    def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'):
        # can be overridden in child classes to condition latents before noise prediction
        return latents
    
    def get_transformer_block_names(self) -> Optional[List[str]]:
        # override in child classes to get transformer block names for lora targeting
        return None
    
    def get_base_model_version(self) -> str:
        # override in child classes to get the base model version
        return "unknown"