File size: 22,621 Bytes
1c72248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import os
from typing import TYPE_CHECKING, List

import torch
import torchvision
import yaml
from toolkit import train_tools
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from PIL import Image
from toolkit.models.base_model import BaseModel
from diffusers import FluxTransformer2DModel, AutoencoderKL
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance
from toolkit.dequantize import patch_dequantization_on_save
from toolkit.accelerator import get_accelerator, unwrap_model
from optimum.quanto import freeze, QTensor
from toolkit.util.mask import generate_random_mask, random_dialate_mask
from toolkit.util.quantize import quantize, get_qtype
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer
from .pipeline import Flex2Pipeline
from einops import rearrange, repeat
import random
import torch.nn.functional as F

if TYPE_CHECKING:
    from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO

scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": 0.5,
    "max_image_seq_len": 4096,
    "max_shift": 1.15,
    "num_train_timesteps": 1000,
    "shift": 3.0,
    "use_dynamic_shifting": True
}


def random_blur(img, min_kernel_size=3, max_kernel_size=23, p=0.5):
    if random.random() < p:
        kernel_size = random.randint(min_kernel_size, max_kernel_size)
        # make sure it is odd
        if kernel_size % 2 == 0:
            kernel_size += 1
        img = torchvision.transforms.functional.gaussian_blur(img, kernel_size=kernel_size)
    return img

class Flex2(BaseModel):
    arch = "flex2"

    def __init__(
            self,
            device,
            model_config: ModelConfig,
            dtype='bf16',
            custom_pipeline=None,
            noise_scheduler=None,
            **kwargs
    ):
        super().__init__(
            device,
            model_config,
            dtype,
            custom_pipeline,
            noise_scheduler,
            **kwargs
        )
        self.is_flow_matching = True
        self.is_transformer = True
        self.target_lora_modules = ['FluxTransformer2DModel']
        
        # for training, pass these as kwargs
        self.invert_inpaint_mask_chance = model_config.model_kwargs.get('invert_inpaint_mask_chance', 0.0)
        self.inpaint_dropout = model_config.model_kwargs.get('inpaint_dropout', 0.0)
        self.control_dropout = model_config.model_kwargs.get('control_dropout', 0.0)
        self.inpaint_random_chance = model_config.model_kwargs.get('inpaint_random_chance', 0.0)
        self.random_blur_mask = model_config.model_kwargs.get('random_blur_mask', False)
        self.random_dialate_mask = model_config.model_kwargs.get('random_dialate_mask', False)
        self.do_random_inpainting = model_config.model_kwargs.get('do_random_inpainting', False)

    # static method to get the noise scheduler
    @staticmethod
    def get_train_scheduler():
        return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)

    def get_bucket_divisibility(self):
        return 16

    def load_model(self):
        dtype = self.torch_dtype
        self.print_and_status_update("Loading Flux2 model")
        # will be updated if we detect a existing checkpoint in training folder
        model_path = self.model_config.name_or_path
        # this is the original path put in the model directory
        # it is here because for finetuning we only save the transformer usually
        # so we need this for the VAE, te, etc
        base_model_path = self.model_config.name_or_path_original

        transformer_path = model_path
        transformer_subfolder = 'transformer'
        if os.path.exists(transformer_path):
            transformer_subfolder = None
            transformer_path = os.path.join(transformer_path, 'transformer')
            # check if the path is a full checkpoint.
            te_folder_path = os.path.join(model_path, 'text_encoder')
            # if we have the te, this folder is a full checkpoint, use it as the base
            if os.path.exists(te_folder_path):
                base_model_path = model_path

        self.print_and_status_update("Loading transformer")
        transformer = FluxTransformer2DModel.from_pretrained(
            transformer_path,
            subfolder=transformer_subfolder,
            torch_dtype=dtype,
        )
        transformer.to(self.quantize_device, dtype=dtype)

        if self.model_config.quantize:
            # patch the state dict method
            patch_dequantization_on_save(transformer)
            quantization_type = get_qtype(self.model_config.qtype)
            self.print_and_status_update("Quantizing transformer")
            quantize(transformer, weights=quantization_type,
                     **self.model_config.quantize_kwargs)
            freeze(transformer)
            transformer.to(self.device_torch)
        else:
            transformer.to(self.device_torch, dtype=dtype)

        flush()

        self.print_and_status_update("Loading T5")
        tokenizer_2 = T5TokenizerFast.from_pretrained(
            base_model_path, subfolder="tokenizer_2", torch_dtype=dtype
        )
        text_encoder_2 = T5EncoderModel.from_pretrained(
            base_model_path, subfolder="text_encoder_2", torch_dtype=dtype
        )
        text_encoder_2.to(self.device_torch, dtype=dtype)
        flush()

        if self.model_config.quantize_te:
            self.print_and_status_update("Quantizing T5")
            quantize(text_encoder_2, weights=get_qtype(
                self.model_config.qtype))
            freeze(text_encoder_2)
            flush()

        self.print_and_status_update("Loading CLIP")
        text_encoder = CLIPTextModel.from_pretrained(
            base_model_path, subfolder="text_encoder", torch_dtype=dtype)
        tokenizer = CLIPTokenizer.from_pretrained(
            base_model_path, subfolder="tokenizer", torch_dtype=dtype)
        text_encoder.to(self.device_torch, dtype=dtype)

        self.print_and_status_update("Loading VAE")
        vae = AutoencoderKL.from_pretrained(
            base_model_path, subfolder="vae", torch_dtype=dtype)

        self.noise_scheduler = Flex2.get_train_scheduler()

        self.print_and_status_update("Making pipe")

        pipe: Flex2Pipeline = Flex2Pipeline(
            scheduler=self.noise_scheduler,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            text_encoder_2=None,
            tokenizer_2=tokenizer_2,
            vae=vae,
            transformer=None,
        )
        # for quantization, it works best to do these after making the pipe
        pipe.text_encoder_2 = text_encoder_2
        pipe.transformer = transformer

        self.print_and_status_update("Preparing Model")

        text_encoder = [pipe.text_encoder, pipe.text_encoder_2]
        tokenizer = [pipe.tokenizer, pipe.tokenizer_2]

        pipe.transformer = pipe.transformer.to(self.device_torch)

        flush()
        # just to make sure everything is on the right device and dtype
        text_encoder[0].to(self.device_torch)
        text_encoder[0].requires_grad_(False)
        text_encoder[0].eval()
        text_encoder[1].to(self.device_torch)
        text_encoder[1].requires_grad_(False)
        text_encoder[1].eval()
        pipe.transformer = pipe.transformer.to(self.device_torch)
        flush()

        # save it to the model class
        self.vae = vae
        self.text_encoder = text_encoder  # list of text encoders
        self.tokenizer = tokenizer  # list of tokenizers
        self.model = pipe.transformer
        self.pipeline = pipe
        self.print_and_status_update("Model Loaded")

    def get_generation_pipeline(self):
        scheduler = Flex2.get_train_scheduler()

        pipeline: Flex2Pipeline = Flex2Pipeline(
            scheduler=scheduler,
            text_encoder=unwrap_model(self.text_encoder[0]),
            tokenizer=self.tokenizer[0],
            text_encoder_2=unwrap_model(self.text_encoder[1]),
            tokenizer_2=self.tokenizer[1],
            vae=unwrap_model(self.vae),
            transformer=unwrap_model(self.transformer)
        )

        pipeline = pipeline.to(self.device_torch)

        return pipeline

    def generate_single_image(
        self,
        pipeline: Flex2Pipeline,
        gen_config: GenerateImageConfig,
        conditional_embeds: PromptEmbeds,
        unconditional_embeds: PromptEmbeds,
        generator: torch.Generator,
        extra: dict,
    ):
        if gen_config.ctrl_img is None:
            control_img = None
        else:
            control_img = Image.open(gen_config.ctrl_img)
            if ".inpaint." not in gen_config.ctrl_img:
                control_img = control_img.convert("RGB")
            else:
                # make sure it has an alpha
                if control_img.mode != "RGBA":
                    raise ValueError("Inpainting images must have an alpha channel")
        img = pipeline(
            prompt_embeds=conditional_embeds.text_embeds,
            pooled_prompt_embeds=conditional_embeds.pooled_embeds,
            height=gen_config.height,
            width=gen_config.width,
            num_inference_steps=gen_config.num_inference_steps,
            guidance_scale=gen_config.guidance_scale,
            latents=gen_config.latents,
            generator=generator,
            control_image=control_img,
            control_image_idx=gen_config.ctrl_idx,
            **extra
        ).images[0]
        return img

    def get_noise_prediction(
        self,
        latent_model_input: torch.Tensor,
        timestep: torch.Tensor,  # 0 to 1000 scale
        text_embeddings: PromptEmbeds,
        guidance_embedding_scale: float,
        bypass_guidance_embedding: bool,
        **kwargs
    ):
        with torch.no_grad():
            bs, c, h, w = latent_model_input.shape
            latent_model_input_packed = rearrange(
                latent_model_input,
                "b c (h ph) (w pw) -> b (h w) (c ph pw)",
                ph=2,
                pw=2
            )

            img_ids = torch.zeros(h // 2, w // 2, 3)
            img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
            img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
            img_ids = repeat(img_ids, "h w c -> b (h w) c",
                             b=bs).to(self.device_torch)

            txt_ids = torch.zeros(
                bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch)

            # # handle guidance
            if self.unet_unwrapped.config.guidance_embeds:
                if isinstance(guidance_embedding_scale, list):
                    guidance = torch.tensor(
                        guidance_embedding_scale, device=self.device_torch)
                else:
                    guidance = torch.tensor(
                        [guidance_embedding_scale], device=self.device_torch)
                    guidance = guidance.expand(latent_model_input.shape[0])
            else:
                guidance = None

        if bypass_guidance_embedding:
            bypass_flux_guidance(self.unet)

        cast_dtype = self.unet.dtype
        # changes from orig implementation
        if txt_ids.ndim == 3:
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            img_ids = img_ids[0]

        noise_pred = self.unet(
            hidden_states=latent_model_input_packed.to(
                self.device_torch, cast_dtype),
            timestep=timestep / 1000,
            encoder_hidden_states=text_embeddings.text_embeds.to(
                self.device_torch, cast_dtype),
            pooled_projections=text_embeddings.pooled_embeds.to(
                self.device_torch, cast_dtype),
            txt_ids=txt_ids,
            img_ids=img_ids,
            guidance=guidance,
            return_dict=False,
            **kwargs,
        )[0]

        if isinstance(noise_pred, QTensor):
            noise_pred = noise_pred.dequantize()

        noise_pred = rearrange(
            noise_pred,
            "b (h w) (c ph pw) -> b c (h ph) (w pw)",
            h=latent_model_input.shape[2] // 2,
            w=latent_model_input.shape[3] // 2,
            ph=2,
            pw=2,
            c=self.vae.config.latent_channels
        )

        if bypass_guidance_embedding:
            restore_flux_guidance(self.unet)
        
        return noise_pred
    
    def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
        if self.pipeline.text_encoder.device != self.device_torch:
            self.pipeline.text_encoder.to(self.device_torch)
        prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux(
            self.tokenizer,
            self.text_encoder,
            prompt,
            max_length=512,
        )
        pe = PromptEmbeds(
            prompt_embeds
        )
        pe.pooled_embeds = pooled_prompt_embeds
        return pe
    
    def get_model_has_grad(self):
        # return from a weight if it has grad
        return self.model.proj_out.weight.requires_grad

    def get_te_has_grad(self):
        # return from a weight if it has grad
        return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad
    
    def save_model(self, output_path, meta, save_dtype):
        # only save the unet
        transformer: FluxTransformer2DModel = unwrap_model(self.model)
        transformer.save_pretrained(
            save_directory=os.path.join(output_path, 'transformer'),
            safe_serialization=True,
        )

        meta_path = os.path.join(output_path, 'aitk_meta.yaml')
        with open(meta_path, 'w') as f:
            yaml.dump(meta, f)

    def get_loss_target(self, *args, **kwargs):
        noise = kwargs.get('noise')
        batch = kwargs.get('batch')
        return (noise - batch.latents).detach()
    
    def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'):
        with torch.no_grad():
            # inpainting input is 0-1 (bs, 4, h, w) on batch.inpaint_tensor
            # 4th channel is the mask with 1 being keep area and 0 being area to inpaint.
            # todo handle dropout on a batch item level, this frops out the entire batch
            do_dropout = random.random() < self.inpaint_dropout if self.inpaint_dropout > 0.0 else False
            # do random mask if we dont have one
            inpaint_tensor = batch.inpaint_tensor
            if inpaint_tensor is None and batch.mask_tensor is not None:
                # we have a mask tensor, use it
                inpaint_tensor = batch.mask_tensor
            
            if self.inpaint_random_chance > 0.0:
                do_random = random.random() < self.inpaint_random_chance
                if do_random:
                    # force a random tensor
                    inpaint_tensor = None
            
            if inpaint_tensor is None and not do_dropout and self.do_random_inpainting:
                # generate a random one since we dont have one
                # this will make random blobs, invert the blobs for now as we normanlly inpaint the alpha
                inpaint_tensor = 1 - generate_random_mask(
                    batch_size=latents.shape[0],
                    height=latents.shape[2],
                    width=latents.shape[3],
                    device=latents.device,
                ).to(latents.device, latents.dtype)
            if inpaint_tensor is not None and not do_dropout:
                
                if inpaint_tensor.shape[1] == 4:
                    # get just the mask 
                    inpainting_tensor_mask = inpaint_tensor[:, 3:4, :, :].to(latents.device, dtype=latents.dtype)
                elif inpaint_tensor.shape[1] == 3:
                    # rgb mask. Just get one channel
                    inpainting_tensor_mask = inpaint_tensor[:, 0:1, :, :].to(latents.device, dtype=latents.dtype)
                    # mask is 0-1 with 1 being inpaint area, we need to invert it for now, it is re inverted later
                    inpaint_tensor = 1 - inpaint_tensor
                else:
                    inpainting_tensor_mask = inpaint_tensor
                
                # # use our batch latents so we cna avoid encoding again
                inpainting_latent = batch.latents
                
                # resize the mask to match the new encoded size
                inpainting_tensor_mask = F.interpolate(inpainting_tensor_mask, size=(inpainting_latent.shape[2], inpainting_latent.shape[3]), mode='bilinear')
                inpainting_tensor_mask = inpainting_tensor_mask.to(latents.device, latents.dtype)
                
                if self.random_blur_mask:
                    # blur the mask
                    # Give it a channel dim of 1
                    if len(inpainting_tensor_mask.shape) == 3:
                        # if it is 3d, add a channel dim
                        inpainting_tensor_mask = inpainting_tensor_mask.unsqueeze(1)
                    # we are at latent size, so keep kernel smaller
                    inpainting_tensor_mask = random_blur(
                        inpainting_tensor_mask,
                        min_kernel_size=3, 
                        max_kernel_size=8,
                        p=0.5
                    )
                
                do_mask_invert = False
                if self.invert_inpaint_mask_chance > 0.0:
                    do_mask_invert = random.random() < self.invert_inpaint_mask_chance
                if do_mask_invert:
                    # invert the mask
                    inpainting_tensor_mask = 1 - inpainting_tensor_mask
                
                # mask out the inpainting area, it is currently 0 for inpaint area, and 1 for keep area
                # we are zeroing our the latents in the inpaint area not on the pixel space.
                inpainting_latent = inpainting_latent * inpainting_tensor_mask
                
                # do the random dialation after the mask is applied so it does not match perfectly. 
                # this will make the model learn to prevent weird edges
                if self.random_dialate_mask:
                    inpainting_tensor_mask = random_dialate_mask(
                        inpainting_tensor_mask,
                        max_percent=0.05 
                    )
                
                # mask needs to be 1 for inpaint area and 0 for area to leave alone. So flip it.
                inpainting_tensor_mask = 1 - inpainting_tensor_mask
                # leave the mask as 0-1 and concat on channel of latents
                inpainting_latent = torch.cat((inpainting_latent, inpainting_tensor_mask), dim=1)
            else:
                # we have iinpainting but didnt get a control. or we are doing a dropout
                # the input needs to be all zeros for the latents and all 1s for the mask
                inpainting_latent = torch.zeros_like(latents)
                # add ones for the mask since we are technically inpainting everything
                inpainting_latent = torch.cat((inpainting_latent, torch.ones_like(inpainting_latent[:, :1, :, :])), dim=1)
            
            control_tensor = batch.control_tensor
            if control_tensor is None:
                # concat random normal noise onto the latents
                # check dimension, this is before they are rearranged
                # it is latent_model_input = torch.cat([latents, control_image], dim=2) after rearranging
                ctrl = torch.zeros(
                    latents.shape[0], # bs
                    latents.shape[1],
                    latents.shape[2], 
                    latents.shape[3], 
                    device=latents.device, 
                    dtype=latents.dtype
                )
                # inpainting always comes first
                ctrl = torch.cat((inpainting_latent, ctrl), dim=1)
                latents = torch.cat((latents, ctrl), dim=1)
                return latents.detach()
            # if we have multiple control tensors, they come in like [bs, num_control_images, ch, h, w]
            # if we have 1, it comes in like [bs, ch, h, w]
            # stack out control tensors to be [bs, ch * num_control_images, h, w]
            
            control_tensor_list = []
            if len(control_tensor.shape) == 4:
                control_tensor_list.append(control_tensor)
            else:
                num_control_images = control_tensor.shape[1]
                # reshape
                control_tensor = control_tensor.view(
                    control_tensor.shape[0], 
                    control_tensor.shape[1] * control_tensor.shape[2], 
                    control_tensor.shape[3], 
                    control_tensor.shape[4]
                )
                control_tensor_list = control_tensor.chunk(num_control_images, dim=1)
            
            do_dropout = random.random() < self.control_dropout if self.control_dropout > 0.0 else False
            if do_dropout:
                # dropout with zeros
                control_latent = torch.zeros_like(batch.latents)
            else:
                # we only have one control so we randomly pick from this list
                control_tensor = random.choice(control_tensor_list)
                # it is 0-1 need to convert to -1 to 1
                control_tensor = control_tensor * 2 - 1

                control_tensor = control_tensor.to(self.vae_device_torch, dtype=self.torch_dtype)
                
                # if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
                if control_tensor.shape[2] != batch.tensor.shape[2] or control_tensor.shape[3] != batch.tensor.shape[3]:
                    control_tensor = F.interpolate(control_tensor, size=(batch.tensor.shape[2], batch.tensor.shape[3]), mode='bilinear')
                
                # encode it
                control_latent = self.encode_images(control_tensor).to(latents.device, latents.dtype)
                
            # inpainting always comes first
            control_latent = torch.cat((inpainting_latent, control_latent), dim=1)
            # concat it onto the latents
            latents = torch.cat((latents, control_latent), dim=1)
            return latents.detach()