rdsarjito
8 commit
f391e9e
raw
history blame
7.02 kB
import streamlit as st
import torch
import torch.nn as nn
import re
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import requests
from bs4 import BeautifulSoup
# Set page configuration
st.set_page_config(page_title="Aplikasi Deteksi Alergen", page_icon="🍲", layout="wide")
# Target label
target_columns = ['susu', 'kacang', 'telur', 'makanan_laut', 'gandum']
# Device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Text cleaning
def clean_text(text):
text = text.replace('--', ' ')
text = re.sub(r"http\S+", "", text)
text = re.sub('\n', ' ', text)
text = re.sub("[^a-zA-Z0-9\s]", " ", text)
text = re.sub(" {2,}", " ", text)
text = text.strip().lower()
return text
# Multilabel BERT model
class MultilabelBertClassifier(nn.Module):
def __init__(self, model_name, num_labels):
super(MultilabelBertClassifier, self).__init__()
self.bert = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
self.bert.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
return outputs.logits
# Load model
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p2')
model = MultilabelBertClassifier('indobenchmark/indobert-base-p1', len(target_columns))
try:
state_dict = torch.load('model/alergen_model.pt', map_location=device)
if 'model_state_dict' in state_dict:
model_state_dict = state_dict['model_state_dict']
else:
model_state_dict = state_dict
new_state_dict = {k[7:] if k.startswith('module.') else k: v for k, v in model_state_dict.items()}
model.load_state_dict(new_state_dict, strict=False)
st.success("Model berhasil dimuat!")
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.info("Menggunakan model tanpa pre-trained weights.")
model.to(device)
model.eval()
return tokenizer, model
def predict_alergens(ingredients_text, tokenizer, model, threshold=0.5, max_length=128):
cleaned_text = clean_text(ingredients_text)
encoding = tokenizer.encode_plus(
cleaned_text,
add_special_tokens=True,
max_length=max_length,
truncation=True,
return_tensors='pt',
padding='max_length'
)
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
probs = torch.sigmoid(outputs).cpu().numpy()[0] # hasil sigmoid (0-1)
results = []
for i, label in enumerate(target_columns):
present = probs[i] > threshold
percent = float(probs[i]) * 100
results.append({
'label': label,
'present': present,
'probability': percent
})
return results
# Scrape Cookpad
def scrape_ingredients_from_url(url):
try:
headers = {"User-Agent": "Mozilla/5.0"}
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
ingredients_div = soup.find('div', id='ingredients')
if not ingredients_div:
return None
items = ingredients_div.find_all(['li', 'span'])
ingredients = [item.get_text(strip=True) for item in items if item.get_text(strip=True)]
return '\n'.join(ingredients)
except Exception as e:
st.error(f"Gagal mengambil data dari URL: {e}")
return None
# Main App
def main():
st.title("Aplikasi Deteksi Alergen dalam Resep")
st.markdown("""
Aplikasi ini memprediksi alergen yang terkandung dalam resep makanan berdasarkan bahan-bahan.
""")
with st.spinner("Memuat model..."):
tokenizer, model = load_model()
col1, col2 = st.columns([3, 2])
with col1:
st.subheader("Masukkan URL Resep dari Cookpad")
url = st.text_input("Contoh: https://cookpad.com/id/resep/24678703-gulai-telur-tahu-dan-kacang-panjang")
threshold = st.slider(
"Atur Threshold Deteksi Alergen",
min_value=0.1,
max_value=0.9,
value=0.5,
step=0.05,
help="Semakin rendah threshold, semakin sensitif model terhadap kemungkinan adanya alergen."
)
if st.button("Deteksi Alergen", type="primary"):
if url:
with st.spinner("Mengambil bahan resep dari URL..."):
ingredients = scrape_ingredients_from_url(url)
if ingredients:
st.text_area("Daftar Bahan", ingredients, height=200)
with st.spinner("Menganalisis bahan..."):
alergens = predict_alergens(ingredients, tokenizer, model, threshold=threshold)
with col2:
st.subheader("Hasil Deteksi")
emoji_map = {
'susu': 'πŸ₯›',
'kacang': 'πŸ₯œ',
'telur': 'πŸ₯š',
'makanan_laut': '🦐',
'gandum': '🌾'
}
detected = []
for result in alergens:
label = result['label']
name = label.replace('_', ' ').title()
prob = result['probability']
present = result['present']
emoji = emoji_map.get(label, '')
if present:
st.error(f"{emoji} {name}: Terdeteksi ⚠️ ({prob:.2f}%)")
detected.append(name)
else:
st.success(f"{emoji} {name}: Tidak Terdeteksi βœ“ ({prob:.2f}%)")
if detected:
st.warning(f"Resep ini mengandung alergen: {', '.join(detected)}")
else:
st.success("Resep ini tidak mengandung alergen yang terdeteksi.")
else:
st.warning("Gagal mengambil bahan dari halaman Cookpad. Pastikan URL valid.")
else:
st.warning("Silakan masukkan URL resep terlebih dahulu.")
with st.expander("Tentang Aplikasi"):
st.markdown("""
Aplikasi ini menggunakan model IndoBERT untuk deteksi 5 jenis alergen dari bahan resep:
- Susu πŸ₯›
- Kacang πŸ₯œ
- Telur πŸ₯š
- Makanan Laut 🦐
- Gandum 🌾
""")
if __name__ == "__main__":
main()