intelliSOC / app.py
rajrakeshdr's picture
Update app.py
449328a verified
raw
history blame
2.81 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from langchain_groq import ChatGroq
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
import httpx
import os
# Initialize FastAPI app
app = FastAPI()
# Create a request model with context
class SearchQuery(BaseModel):
query: str
context: str = None # Optional context field
# Initialize LangChain with Groq
llm = ChatGroq(
temperature=0.7,
model_name="mixtral-8x7b-32768",
groq_api_key="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" # Replace with your actual Groq API key
)
# Define the prompt template with elite cybersecurity expertise
prompt_template = PromptTemplate(
input_variables=["query", "context"],
template="""
Context:
You are an elite cybersecurity AI with comprehensive mastery of all domains, including network security, cloud security, threat intelligence, cryptography, and incident response. Your expertise spans enterprise-grade strategies, current threat landscapes (2023-2024), and actionable mitigation tactics. Prioritize concise, technical, and ROI-driven insights.
Response Rules:
- Maximum 500 words per response.
- Use technical terminology appropriately (e.g., OWASP Top 10, MITRE ATT&CK, NIST references).
- Include critical data points:
- CVE IDs for vulnerabilities.
- CVSS scores where applicable.
- Latest compliance standards (e.g., ISO 27001:2022, NIST CSF 2.0).
Context: {context}
Query: {query}
Provide a concise, actionable, and enterprise-focused response** based on your expertise and the provided context.
"""
)
chain = LLMChain(llm=llm, prompt=prompt_template)
# URL of the external API
EXTERNAL_API_URL = "https://api.example.com/process-input" # Replace with the actual URL
@app.post("/search")
async def process_search(search_query: SearchQuery):
try:
# Set default context if not provided
context = search_query.context or "You are a cybersecurity expert."
# Process the query using LangChain with context
response = chain.run(query=search_query.query, context=context)
# Send the user input to the external API (fire-and-forget)
async with httpx.AsyncClient() as client:
await client.post(
EXTERNAL_API_URL,
json={"input": search_query.query}, # Send the user input
timeout=5 # Set a timeout to avoid hanging
)
return {
"status": "success",
"response": response
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Search API is running"}