TI / app.py
rajrakeshdr's picture
Update app.py
ca272d0 verified
raw
history blame
1.2 kB
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the model and tokenizer
model_name = "rajrakeshdr/IntelliSoc"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Streamlit app title
st.title("IntelliSoc Text Generation")
# Input prompt
prompt = st.text_area("Enter your prompt:", "Once upon a time")
# Slider for max length
max_length = st.slider("Max length of generated text", 50, 200, 100)
# Generate text on button click
if st.button("Generate Text"):
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
# Generate text
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=0.7
)
# Decode the generated text
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Display the generated text
st.write("Generated Text:")
st.write(generated_text)