rahuln2002 commited on
Commit
5c9215b
·
verified ·
1 Parent(s): b54b140

Upload 27 files

Browse files
Dockerfile ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.12.9-slim-bookworm
2
+ WORKDIR /app
3
+ COPY requirements.txt .
4
+ RUN pip install --no-cache-dir -r requirements.txt
5
+ RUN mkdir -p /app/logs && chmod 777 /app/logs
6
+ COPY . .
7
+ EXPOSE 8080
8
+ CMD ["python", "app.py"]
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, request
2
+ from knowledgeassistant.components.summarization import DataSummarization
3
+ from knowledgeassistant.components.keywordextraction import KeywordExtraction
4
+ from knowledgeassistant.components.RAG import RAG
5
+ from knowledgeassistant.entity.config_entity import DataSummarizationConfig, PipelineConfig, DataInputConfig, KeywordExtractionConfig, RAGConfig
6
+ from knowledgeassistant.utils.main_utils.utils import write_txt_file, read_txt_file
7
+
8
+ app = Flask(__name__)
9
+
10
+ @app.route('/', methods=['GET', 'POST'])
11
+ def home():
12
+ if request.method == 'POST':
13
+ pipeline_config = PipelineConfig()
14
+ data_input_config = DataInputConfig(pipeline_config)
15
+
16
+ user_text = request.form['user_text']
17
+ user_option = request.form['tasks']
18
+ result_text = ""
19
+
20
+ if user_option == "Q&A":
21
+ user_question = request.form['user_question']
22
+ else:
23
+ user_number = int(request.form['user_number'])
24
+
25
+ input_text_path = data_input_config.input_text_file_path
26
+ write_txt_file(input_text_path, user_text, replace=True)
27
+
28
+ if user_option == "summarization":
29
+ data_summarization_config = DataSummarizationConfig(pipeline_config)
30
+ summarizer = DataSummarization(data_summarization_config)
31
+ file_path = data_summarization_config.summarized_text_file_path
32
+ summarizer.initiate_data_summarization(input_text_path=input_text_path, min_length=int(user_number))
33
+ elif user_option == "keywords":
34
+ keyword_extraction_config = KeywordExtractionConfig(pipeline_config)
35
+ extractor = KeywordExtraction(keyword_extraction_config)
36
+ file_path = keyword_extraction_config.extracted_keywords_file_path
37
+ extractor.initiate_keyword_extraction(input_text_path=input_text_path, keywords_count=int(user_number))
38
+ elif user_option == "Q&A":
39
+ rag_config = RAGConfig(pipeline_config)
40
+ rag = RAG(rag_config)
41
+ file_path = rag_config.rag_generated_text_path
42
+ rag.initiate_rag(input_text_path=input_text_path, query=user_question)
43
+
44
+ result_text = read_txt_file(file_path=file_path)
45
+
46
+ return render_template("index.html", task=user_option, text=result_text, user_text=user_text)
47
+
48
+ return render_template("index.html", task=None, text=None, user_text=None)
49
+
50
+ if __name__ == '__main__':
51
+ app.run(host='0.0.0.0', port=8080)
knowledgeassistant/__init__.py ADDED
File without changes
knowledgeassistant/cloud/__init__.py ADDED
File without changes
knowledgeassistant/components/RAG.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from knowledgeassistant.logging.logger import logging
2
+ from knowledgeassistant.exception.exception import KnowledgeAssistantException
3
+
4
+ from knowledgeassistant.entity.config_entity import RAGConfig
5
+ from knowledgeassistant.utils.main_utils.utils import read_txt_file, write_txt_file
6
+
7
+ import os
8
+ import sys
9
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
10
+ from langchain_core.documents import Document
11
+ from langchain_ollama import OllamaEmbeddings
12
+ from langchain_community.vectorstores import FAISS
13
+ from together import Together
14
+ from langchain.chains import RetrievalQA
15
+ from langchain_core.language_models import LLM
16
+
17
+ from dotenv import load_dotenv
18
+ import typing
19
+
20
+ load_dotenv()
21
+ os.environ["TOGETHER_API_KEY"] = os.getenv("TOGETHER_API_KEY")
22
+
23
+ class RAG:
24
+ def __init__(self, rag_config: RAGConfig):
25
+ try:
26
+ self.rag_config = rag_config
27
+ except Exception as e:
28
+ raise KnowledgeAssistantException(e, sys)
29
+
30
+ def split_text(self, input_text_path: str):
31
+ try:
32
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 200)
33
+ raw_documents = text_splitter.split_text(text = read_txt_file(file_path = input_text_path))
34
+ documents = [Document(page_content=text) for text in raw_documents]
35
+ return documents
36
+ except Exception as e:
37
+ raise KnowledgeAssistantException(e, sys)
38
+
39
+ def create_and_store_embeddings(self, documents: list):
40
+ try:
41
+ db = FAISS.from_documents(documents, OllamaEmbeddings(model="nomic-embed-text"))
42
+ return db
43
+ except Exception as e:
44
+ raise KnowledgeAssistantException(e, sys)
45
+
46
+ class TogetherLLM(LLM):
47
+ model_name: str = "meta-llama/Llama-3-8b-chat-hf"
48
+
49
+ @property
50
+ def _llm_type(self) -> str:
51
+ return "together_ai"
52
+
53
+ def _call(self, prompt: str, stop: typing.Optional[typing.List[str]] = None) -> str:
54
+ client = Together()
55
+ response = client.chat.completions.create(
56
+ model=self.model_name,
57
+ messages=[{"role": "user", "content": prompt}],
58
+ )
59
+ return response.choices[0].message.content
60
+
61
+ def retrieval(self, llm, db, query):
62
+ try:
63
+ chain = RetrievalQA.from_chain_type(
64
+ llm=llm,
65
+ retriever=db.as_retriever()
66
+ )
67
+ result = chain.invoke(query)
68
+ return result
69
+ except Exception as e:
70
+ raise KnowledgeAssistantException(e, sys)
71
+
72
+ def initiate_rag(self, input_text_path: str, query: str):
73
+ try:
74
+ docs = self.split_text(input_text_path = input_text_path)
75
+ logging.info("Splitted Text into Chunks Successfully")
76
+ store = self.create_and_store_embeddings(documents = docs)
77
+ logging.info("Successfully stored vector embeddings")
78
+ llm = self.TogetherLLM()
79
+ logging.info("Successfully loaded the llm")
80
+ result = self.retrieval(
81
+ llm = llm,
82
+ db = store,
83
+ query = query
84
+ )
85
+ logging.info("Successfully Generated Results")
86
+ write_txt_file(
87
+ file_path = self.rag_config.rag_generated_text_path,
88
+ content = result['result']
89
+ )
90
+ logging.info("Successfully wrote results in txt file")
91
+ except Exception as e:
92
+ raise KnowledgeAssistantException(e, sys)
knowledgeassistant/components/__init__.py ADDED
File without changes
knowledgeassistant/components/keywordextraction.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from knowledgeassistant.exception.exception import KnowledgeAssistantException
2
+ from knowledgeassistant.logging.logger import logging
3
+
4
+ from knowledgeassistant.entity.config_entity import KeywordExtractionConfig
5
+ from knowledgeassistant.utils.main_utils.utils import read_txt_file, write_txt_file
6
+
7
+ import sys
8
+ import numpy as np
9
+ from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
10
+
11
+ class KeywordExtraction:
12
+ def __init__(self, keyword_extraction_config: KeywordExtractionConfig):
13
+ try:
14
+ self.keyword_extraction_config = keyword_extraction_config
15
+ except Exception as e:
16
+ raise KnowledgeAssistantException(e, sys)
17
+
18
+ def extract_keywords(self, input_text_path: str, keywords_count: str):
19
+ try:
20
+ vectorizer = CountVectorizer(stop_words='english', token_pattern=r'(?u)\b[a-zA-Z]+\b')
21
+ transformer = TfidfTransformer()
22
+ logging.info("Vectorizer and Transformer successfully setup")
23
+
24
+ text = read_txt_file(file_path=input_text_path)
25
+ word_count_matrix = vectorizer.fit_transform([text])
26
+ tfidf_matrix = transformer.fit_transform(word_count_matrix)
27
+ logging.info("Successfully calculated word count and their tfidf scores")
28
+
29
+ feature_array = np.array([word for word in vectorizer.get_feature_names_out() if word.isalpha()])
30
+ tfidf_sorting = np.argsort(tfidf_matrix.toarray()).flatten()[::-1]
31
+ logging.info("Successfully extracted keywords and sorted in descending order of their tfidf scores")
32
+
33
+ top_keywords = feature_array[tfidf_sorting][:keywords_count]
34
+ content = "\n".join(top_keywords)
35
+ write_txt_file(
36
+ self.keyword_extraction_config.extracted_keywords_file_path,
37
+ content,
38
+ True
39
+ )
40
+ logging.info(f"Successfully extracted and wrote top {keywords_count} keywords from text")
41
+ except Exception as e:
42
+ raise KnowledgeAssistantException(e, sys)
43
+
44
+ def initiate_keyword_extraction(self, input_text_path: str, keywords_count: str):
45
+ try:
46
+ self.extract_keywords(
47
+ input_text_path = input_text_path,
48
+ keywords_count = keywords_count
49
+ )
50
+ except Exception as e:
51
+ raise KnowledgeAssistantException(e, sys)
knowledgeassistant/components/summarization.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from knowledgeassistant.exception.exception import KnowledgeAssistantException
2
+ from knowledgeassistant.logging.logger import logging
3
+
4
+ from knowledgeassistant.entity.config_entity import DataSummarizationConfig
5
+ from knowledgeassistant.utils.main_utils.utils import write_txt_file, read_txt_file
6
+
7
+ import sys
8
+ from transformers import pipeline
9
+
10
+ class DataSummarization:
11
+ def __init__(self, data_summarization_config: DataSummarizationConfig):
12
+ try:
13
+ self.data_summarization_config = data_summarization_config
14
+ except Exception as e:
15
+ raise KnowledgeAssistantException(e, sys)
16
+
17
+ def summarize(self, input_text_path: str, min_length: int):
18
+ try:
19
+ pipe = pipeline("summarization", model="facebook/bart-large-cnn")
20
+ logging.info("Summarization Pipeline Successfully Setup")
21
+
22
+ text = read_txt_file(input_text_path)
23
+ summary = pipe(text, min_length = min_length, do_sample = False)
24
+ logging.info("Text successfully summarized")
25
+
26
+ write_txt_file(self.data_summarization_config.summarized_text_file_path, summary[0].get("summary_text"))
27
+ logging.info("Successfully wrote summarized text")
28
+ except Exception as e:
29
+ raise KnowledgeAssistantException(e, sys)
30
+
31
+ def initiate_data_summarization(self, input_text_path: str, min_length: int):
32
+ try:
33
+ self.summarize(
34
+ input_text_path = input_text_path,
35
+ min_length = min_length
36
+ )
37
+ except Exception as e:
38
+ raise KnowledgeAssistantException(e, sys)
knowledgeassistant/constant/__init__.py ADDED
File without changes
knowledgeassistant/constant/pipeline/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PIPELINE_NAME: str = "KnowledgeAssistant"
2
+ ARTIFACT_DIR: str = "Artifacts"
3
+
4
+
5
+ INPUT_TEXT_DIR: str = "input_text"
6
+ INPUT_TEXT_FILE_NAME: str = "input_text.txt"
7
+
8
+
9
+ DATA_SUMMARIZATION_DIR_NAME: str = "data_summarization"
10
+ SUMMARIZED_TEXT_DIR: str = "summarized_text"
11
+ SUMMARIZED_TEXT_FILE_NAME: str = "summarized_text.txt"
12
+
13
+ KEYWORD_EXTRACTION_DIR_NAME: str = "keyword_extraction"
14
+ EXTRACTED_KEYWORDS_DIR: str = "keywords"
15
+ EXTRACTED_KEYWORDS_FILE_NAME: str = "keywords.txt"
16
+
17
+ RAG_DIR_NAME: str = "RAG"
18
+ RAG_DIR: str = "generation"
19
+ RAG_FILE_NAME: str = "generated_text.txt"
knowledgeassistant/entity/__init__.py ADDED
File without changes
knowledgeassistant/entity/artifact_entity.py ADDED
File without changes
knowledgeassistant/entity/config_entity.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datetime import datetime
3
+ from knowledgeassistant.constant import pipeline
4
+
5
+ class PipelineConfig:
6
+ def __init__(self, timestamp = datetime.now()):
7
+ timestamp = timestamp.strftime("%d_%m_%Y_%H_%M_%S")
8
+ self.pipeline_name = pipeline.PIPELINE_NAME
9
+ self.artifact_name = pipeline.ARTIFACT_DIR
10
+ self.artifact_dir = os.path.join(
11
+ self.artifact_name,
12
+ timestamp
13
+ )
14
+ self.timestamp: str = timestamp
15
+
16
+ class DataInputConfig:
17
+ def __init__(self, pipeline_config: PipelineConfig):
18
+ self.input_text_file_path: str = os.path.join(
19
+ pipeline_config.artifact_dir,
20
+ pipeline.INPUT_TEXT_DIR,
21
+ pipeline.INPUT_TEXT_FILE_NAME
22
+ )
23
+
24
+ class DataSummarizationConfig:
25
+ def __init__(self, pipeline_config: PipelineConfig):
26
+ self.data_summarization_dir: str = os.path.join(
27
+ pipeline_config.artifact_dir,
28
+ pipeline.DATA_SUMMARIZATION_DIR_NAME
29
+ )
30
+ self.summarized_text_file_path: str = os.path.join(
31
+ self.data_summarization_dir,
32
+ pipeline.SUMMARIZED_TEXT_DIR,
33
+ pipeline.SUMMARIZED_TEXT_FILE_NAME
34
+ )
35
+
36
+ class KeywordExtractionConfig:
37
+ def __init__(self, pipeline_config: PipelineConfig):
38
+ self.keyword_extraction_dir: str = os.path.join(
39
+ pipeline_config.artifact_dir,
40
+ pipeline.KEYWORD_EXTRACTION_DIR_NAME
41
+ )
42
+ self.extracted_keywords_file_path: str = os.path.join(
43
+ self.keyword_extraction_dir,
44
+ pipeline.EXTRACTED_KEYWORDS_DIR,
45
+ pipeline.EXTRACTED_KEYWORDS_FILE_NAME
46
+ )
47
+
48
+ class RAGConfig:
49
+ def __init__(self, pipeline_config: PipelineConfig):
50
+ self.RAG_dir: str = os.path.join(
51
+ pipeline_config.artifact_dir,
52
+ pipeline.RAG_DIR_NAME
53
+ )
54
+ self.rag_generated_text_path: str = os.path.join(
55
+ self.RAG_dir,
56
+ pipeline.RAG_DIR,
57
+ pipeline.RAG_FILE_NAME
58
+ )
knowledgeassistant/exception/__init__.py ADDED
File without changes
knowledgeassistant/exception/exception.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from knowledgeassistant.logging import logger
3
+
4
+ class KnowledgeAssistantException(Exception):
5
+ def __init__(self,error_message,error_details:sys):
6
+ self.error_message = error_message
7
+ _,_,exc_tb = error_details.exc_info()
8
+
9
+ self.lineno=exc_tb.tb_lineno
10
+ self.file_name=exc_tb.tb_frame.f_code.co_filename
11
+
12
+ def __str__(self):
13
+ return "Error occured in python script name [{0}] line number [{1}] error message [{2}]".format(
14
+ self.file_name, self.lineno, str(self.error_message)
15
+ )
knowledgeassistant/logging/__init__.py ADDED
File without changes
knowledgeassistant/logging/logger.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import logging
3
+ from datetime import datetime
4
+
5
+ LOG_FILE = f"{datetime.now().strftime('%d_%m_%Y_%H_%M_%S')}.log"
6
+
7
+ logs_path = os.path.join(os.getcwd(),"logs",LOG_FILE)
8
+ os.makedirs(logs_path, exist_ok=True)
9
+
10
+ LOG_FILE_PATH = os.path.join(logs_path, LOG_FILE)
11
+
12
+ logging.basicConfig(
13
+ filename = LOG_FILE_PATH,
14
+ format = "[ %(asctime)s ] : %(lineno)d : %(name)s : %(levelname)s : %(module)s : %(message)s",
15
+ level = logging.INFO,
16
+ )
knowledgeassistant/pipeline/__init__.py ADDED
File without changes
knowledgeassistant/utils/__init__.py ADDED
File without changes
knowledgeassistant/utils/main_utils/__init__.py ADDED
File without changes
knowledgeassistant/utils/main_utils/utils.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from knowledgeassistant.exception.exception import KnowledgeAssistantException
2
+ from knowledgeassistant.logging.logger import logging
3
+ import os
4
+ import sys
5
+
6
+ def write_txt_file(file_path: str, content: str, replace: bool = False):
7
+ try:
8
+ if replace and os.path.exists(file_path):
9
+ os.remove(file_path)
10
+ logging.info(f"Successfully removed the file: {file_path}")
11
+ dir_path = os.path.dirname(file_path)
12
+ logging.info(f"Successfully create the file: {file_path}")
13
+ os.makedirs(dir_path, exist_ok = True)
14
+ with open(file_path, 'w', encoding='utf-8') as txt_file:
15
+ txt_file.write(content)
16
+ except Exception as e:
17
+ raise KnowledgeAssistantException(e, sys)
18
+
19
+ def read_txt_file(file_path: str) -> str:
20
+ try:
21
+ with open(file_path, 'r', encoding='utf-8') as txt_file:
22
+ text = txt_file.read()
23
+ logging.info("Successfully read the file")
24
+ return text
25
+ except Exception as e:
26
+ raise KnowledgeAssistantException(e, sys)
knowledgeassistant/utils/ml_utils/__init__.py ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ipykernel
2
+ pandas
3
+ numpy
4
+ flask
5
+ python-dotenv
6
+ transformers
7
+ torch
8
+ torchvision
9
+ torchaudio
10
+ --extra-index-url https://download.pytorch.org/whl/cu126
11
+ scikit-learn
12
+ langchain
13
+ langchain-community
14
+ langchain-core
15
+ ollama
16
+ chromadb
17
+ faiss-cpu
18
+ together
static/script.js ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ document.addEventListener("DOMContentLoaded", function () {
2
+ function toggleElements() {
3
+ let taskDropdown = document.querySelector("select[name='tasks']");
4
+ let numberInput = document.querySelector("input[name='user_number']");
5
+ let numberLabel = document.getElementById("number_label");
6
+ let questionInput = document.querySelector("input[name='user_question']");
7
+ let questionLabel = document.getElementById("question_label");
8
+ let submitButton = document.getElementById("submit_btn");
9
+
10
+ if (taskDropdown.value === "summarization") {
11
+ numberInput.style.display = "inline";
12
+ numberLabel.style.display = "inline";
13
+ numberInput.disabled = false;
14
+ numberLabel.textContent = "Enter minimum length: ";
15
+ questionInput.style.display = "none";
16
+ questionLabel.style.display = "none";
17
+ submitButton.disabled = false;
18
+ } else if (taskDropdown.value === "keywords") {
19
+ numberInput.style.display = "inline";
20
+ numberLabel.style.display = "inline";
21
+ numberInput.disabled = false;
22
+ numberLabel.textContent = "Count: ";
23
+ questionInput.style.display = "none";
24
+ questionLabel.style.display = "none";
25
+ submitButton.disabled = false;
26
+ } else if (taskDropdown.value === "Q&A") {
27
+ numberInput.style.display = "none";
28
+ numberLabel.style.display = "none";
29
+ questionInput.style.display = "inline";
30
+ questionLabel.style.display = "inline";
31
+ submitButton.disabled = false;
32
+ } else {
33
+ numberInput.style.display = "none";
34
+ numberLabel.style.display = "none";
35
+ questionInput.style.display = "none";
36
+ questionLabel.style.display = "none";
37
+ submitButton.disabled = true;
38
+ }
39
+ }
40
+
41
+ document.querySelector("select[name='tasks']").addEventListener("change", toggleElements);
42
+ toggleElements();
43
+ });
static/style.css ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ * {
2
+ margin: 0;
3
+ padding: 0;
4
+ box-sizing: border-box;
5
+ }
6
+
7
+ body {
8
+ font-family: Arial, sans-serif;
9
+ background-color: #f4f4f4;
10
+ display: flex;
11
+ justify-content: center;
12
+ align-items: center;
13
+ height: 100vh;
14
+ }
15
+
16
+ .container {
17
+ width: 50%;
18
+ background: white;
19
+ padding: 30px;
20
+ box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
21
+ border-radius: 8px;
22
+ text-align: center;
23
+ }
24
+
25
+ h1 {
26
+ color: #333;
27
+ margin-bottom: 20px;
28
+ }
29
+
30
+ label {
31
+ font-size: 16px;
32
+ font-weight: bold;
33
+ display: block;
34
+ margin-top: 15px;
35
+ color: #555;
36
+ text-align: left;
37
+ }
38
+
39
+ textarea, select, input {
40
+ width: 100%;
41
+ padding: 10px;
42
+ margin-top: 5px;
43
+ border: 1px solid #ccc;
44
+ border-radius: 5px;
45
+ font-size: 16px;
46
+ }
47
+
48
+ select {
49
+ cursor: pointer;
50
+ }
51
+
52
+ button {
53
+ background: #4CAF50;
54
+ color: white;
55
+ padding: 12px 20px;
56
+ margin-top: 20px;
57
+ border: none;
58
+ cursor: pointer;
59
+ border-radius: 5px;
60
+ font-size: 16px;
61
+ width: 100%;
62
+ transition: background 0.3s ease;
63
+ }
64
+
65
+ button:disabled {
66
+ background: #ccc;
67
+ cursor: not-allowed;
68
+ }
69
+
70
+ button:hover:not(:disabled) {
71
+ background: #45a049;
72
+ }
73
+
74
+ #number_label {
75
+ display: none;
76
+ }
77
+
78
+ #number {
79
+ display: none;
80
+ }
81
+
82
+ .result-section {
83
+ margin-top: 20px;
84
+ padding: 15px;
85
+ background-color: #eef;
86
+ border-left: 5px solid #4CAF50;
87
+ border-radius: 5px;
88
+ font-size: 16px;
89
+ text-align: left;
90
+ }
templates/index.html ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>Knowledge Assistant</title>
7
+ <link rel="stylesheet" href="static/style.css">
8
+ <script src="static/script.js" defer></script>
9
+ </head>
10
+ <body>
11
+ <div class="container">
12
+ <h1>Enter Details</h1>
13
+ <form action="/" method="POST">
14
+ <label for="user_text">Enter Your Text: </label>
15
+ <textarea name="user_text" rows="4" cols="50" required>{{ user_text if user_text else '' }}</textarea>
16
+ <br><br>
17
+
18
+ <label for="tasks">Choose a Task:</label>
19
+ <select name="tasks" required onchange="toggleElements()">
20
+ <option value="none">--Select--</option>
21
+ <option value="summarization" {% if task == 'summarization' %}selected{% endif %}>Summarize Text</option>
22
+ <option value="keywords" {% if task == 'keywords' %}selected{% endif %}>Get Keywords</option>
23
+ <option value="Q&A" {% if task == 'Q&A' %}selected{% endif %}>Ask Questions</option>
24
+ </select>
25
+ <br><br>
26
+
27
+ <label id="number_label" for="user_number" style="display: none;"></label>
28
+ <input type="number" id="number" name="user_number" style="display: none;">
29
+ <label id="question_label" for="user_question" style="display: none;">Enter Your Question:</label>
30
+ <input type="text" id="question" name="user_question" style="display: none;">
31
+ <br><br>
32
+
33
+ <button type="submit" id="submit_btn" disabled>Submit</button>
34
+ </form>
35
+
36
+ {% if text %}
37
+ <div class="result-section">
38
+ <h2>Result for {{ task }}:</h2>
39
+ <p>{{ text }}</p>
40
+ </div>
41
+ {% endif %}
42
+ </div>
43
+ </body>
44
+ </html>
templates/results.html ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ <h1> {{ task }}: </h1>
2
+ <br>
3
+ {{ text }}