rahuln2002's picture
Update knowledgeassistant/components/RAG.py
93dadc3 verified
from knowledgeassistant.logging.logger import logging
from knowledgeassistant.exception.exception import KnowledgeAssistantException
from knowledgeassistant.entity.config_entity import RAGConfig
from knowledgeassistant.utils.main_utils.utils import read_txt_file, write_txt_file
import os
import sys
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from together import Together
from langchain.chains import RetrievalQA
from langchain_core.language_models import LLM
from dotenv import load_dotenv
import typing
load_dotenv()
os.environ["TOGETHER_API_KEY"] = os.getenv("TOGETHER_API_KEY")
class RAG:
def __init__(self, rag_config: RAGConfig):
try:
self.rag_config = rag_config
except Exception as e:
raise KnowledgeAssistantException(e, sys)
def split_text(self, input_text_path: str):
try:
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 200)
raw_documents = text_splitter.split_text(text = read_txt_file(file_path = input_text_path))
documents = [Document(page_content=text) for text in raw_documents]
return documents
except Exception as e:
raise KnowledgeAssistantException(e, sys)
def create_and_store_embeddings(self, documents: list):
try:
embeddings = HuggingFaceEmbeddings(model_name="/app/models/all-MiniLM-L6-v2")
db = FAISS.from_documents(documents, embeddings)
return db
except Exception as e:
raise KnowledgeAssistantException(e, sys)
class TogetherLLM(LLM):
model_name: str = "meta-llama/Llama-3-8b-chat-hf"
@property
def _llm_type(self) -> str:
return "together_ai"
def _call(self, prompt: str, stop: typing.Optional[typing.List[str]] = None) -> str:
client = Together()
response = client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
)
return response.choices[0].message.content
def retrieval(self, llm, db, query):
try:
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=db.as_retriever()
)
result = chain.invoke(query)
return result
except Exception as e:
raise KnowledgeAssistantException(e, sys)
def initiate_rag(self, input_text_path: str, query: str):
try:
docs = self.split_text(input_text_path = input_text_path)
logging.info("Splitted Text into Chunks Successfully")
store = self.create_and_store_embeddings(documents = docs)
logging.info("Successfully stored vector embeddings")
llm = self.TogetherLLM()
logging.info("Successfully loaded the llm")
result = self.retrieval(
llm = llm,
db = store,
query = query
)
logging.info("Successfully Generated Results")
write_txt_file(
file_path = self.rag_config.rag_generated_text_path,
content = result['result']
)
logging.info("Successfully wrote results in txt file")
except Exception as e:
raise KnowledgeAssistantException(e, sys)