Spaces:
Running
Running
from knowledgeassistant.exception.exception import KnowledgeAssistantException | |
from knowledgeassistant.logging.logger import logging | |
from knowledgeassistant.entity.config_entity import DataSummarizationConfig | |
from knowledgeassistant.utils.main_utils.utils import write_txt_file, read_txt_file | |
import sys | |
import torch | |
from transformers import pipeline, AutoTokenizer | |
class DataSummarization: | |
def __init__(self, data_summarization_config: DataSummarizationConfig): | |
try: | |
self.data_summarization_config = data_summarization_config | |
except Exception as e: | |
raise KnowledgeAssistantException(e, sys) | |
def summarize(self, input_text_path: str, min_length: int): | |
try: | |
model_path = "/app/models/bart-large-cnn" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
pipe = pipeline("summarization", model=model_path, tokenizer=model_path) | |
logging.info("Summarization Pipeline Successfully Setup") | |
text = read_txt_file(input_text_path) | |
tokens = tokenizer.encode(text, truncation=True, max_length=1024, return_tensors="pt") | |
if len(tokens[0]) >= 1024: | |
logging.warning("Input text exceeded 1024 tokens. It has been truncated.") | |
truncated_text = tokenizer.decode(tokens[0], skip_special_tokens=True) | |
frontend_message = "Your input text exceeded the limit of 1024 tokens and has been truncated." | |
else: | |
truncated_text = text | |
frontend_message = "" | |
# Generate summary | |
summary = pipe(truncated_text, min_length=min_length, max_length=142, do_sample=False) | |
logging.info("Text successfully summarized") | |
# Save summary | |
write_txt_file(self.data_summarization_config.summarized_text_file_path, summary[0].get("summary_text")) | |
logging.info("Successfully wrote summarized text") | |
# Return summary along with frontend message | |
return { | |
"summary": summary[0].get("summary_text"), | |
"warning": frontend_message | |
} | |
except Exception as e: | |
raise KnowledgeAssistantException(e, sys) | |
def initiate_data_summarization(self, input_text_path: str, min_length: int): | |
try: | |
self.summarize( | |
input_text_path = input_text_path, | |
min_length = min_length | |
) | |
except Exception as e: | |
raise KnowledgeAssistantException(e, sys) |