Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -37,18 +37,19 @@ except Exception as e:
|
|
37 |
print(f"Error loading model: {e}")
|
38 |
model_weights = None
|
39 |
|
40 |
-
#
|
41 |
-
import random
|
42 |
-
|
43 |
def generate_video(prompt):
|
44 |
"""
|
45 |
-
Generates a
|
46 |
-
Replace this function with the actual inference logic once available.
|
47 |
"""
|
48 |
if model_weights is None:
|
49 |
return "Model failed to load. Please check the logs."
|
50 |
|
51 |
-
#
|
|
|
|
|
|
|
|
|
52 |
width, height = 512, 512
|
53 |
img = Image.new("RGB", (width, height),
|
54 |
color=(random.randint(0, 255),
|
@@ -59,8 +60,8 @@ def generate_video(prompt):
|
|
59 |
transform = transforms.ToTensor()
|
60 |
frame = (transform(img).permute(1, 2, 0).numpy() * 255).astype(np.uint8)
|
61 |
|
62 |
-
# Create a fake video with
|
63 |
-
frames = [frame] * 16 # 16 repeated frames with
|
64 |
output_path = "output.mp4"
|
65 |
|
66 |
# Save frames as a video with 8 fps
|
@@ -68,7 +69,6 @@ def generate_video(prompt):
|
|
68 |
|
69 |
return output_path
|
70 |
|
71 |
-
|
72 |
# Gradio UI
|
73 |
iface = gr.Interface(
|
74 |
fn=generate_video,
|
|
|
37 |
print(f"Error loading model: {e}")
|
38 |
model_weights = None
|
39 |
|
40 |
+
# Function to generate video using the model
|
|
|
|
|
41 |
def generate_video(prompt):
|
42 |
"""
|
43 |
+
Generates a video using the model based on the provided text prompt.
|
|
|
44 |
"""
|
45 |
if model_weights is None:
|
46 |
return "Model failed to load. Please check the logs."
|
47 |
|
48 |
+
# Placeholder - actual inference logic should be implemented here
|
49 |
+
# Example of using the model to generate an image from a prompt
|
50 |
+
# For now, we'll create a random color image as a placeholder.
|
51 |
+
|
52 |
+
# Assuming the model generates an image based on the prompt (modify with actual logic)
|
53 |
width, height = 512, 512
|
54 |
img = Image.new("RGB", (width, height),
|
55 |
color=(random.randint(0, 255),
|
|
|
60 |
transform = transforms.ToTensor()
|
61 |
frame = (transform(img).permute(1, 2, 0).numpy() * 255).astype(np.uint8)
|
62 |
|
63 |
+
# Create a fake video with repeated frames (replace with actual frame generation)
|
64 |
+
frames = [frame] * 16 # 16 repeated frames (replace with actual video frames from the model)
|
65 |
output_path = "output.mp4"
|
66 |
|
67 |
# Save frames as a video with 8 fps
|
|
|
69 |
|
70 |
return output_path
|
71 |
|
|
|
72 |
# Gradio UI
|
73 |
iface = gr.Interface(
|
74 |
fn=generate_video,
|