rahul7star commited on
Commit
dd860f1
Β·
verified Β·
1 Parent(s): 391f5b4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -37,18 +37,19 @@ except Exception as e:
37
  print(f"Error loading model: {e}")
38
  model_weights = None
39
 
40
- # Placeholder function - Replace with actual inference logic
41
- import random
42
-
43
  def generate_video(prompt):
44
  """
45
- Generates a placeholder video using the model.
46
- Replace this function with the actual inference logic once available.
47
  """
48
  if model_weights is None:
49
  return "Model failed to load. Please check the logs."
50
 
51
- # Create a random color image as a frame
 
 
 
 
52
  width, height = 512, 512
53
  img = Image.new("RGB", (width, height),
54
  color=(random.randint(0, 255),
@@ -59,8 +60,8 @@ def generate_video(prompt):
59
  transform = transforms.ToTensor()
60
  frame = (transform(img).permute(1, 2, 0).numpy() * 255).astype(np.uint8)
61
 
62
- # Create a fake video with 16 frames, all having the same color
63
- frames = [frame] * 16 # 16 repeated frames with different colors
64
  output_path = "output.mp4"
65
 
66
  # Save frames as a video with 8 fps
@@ -68,7 +69,6 @@ def generate_video(prompt):
68
 
69
  return output_path
70
 
71
-
72
  # Gradio UI
73
  iface = gr.Interface(
74
  fn=generate_video,
 
37
  print(f"Error loading model: {e}")
38
  model_weights = None
39
 
40
+ # Function to generate video using the model
 
 
41
  def generate_video(prompt):
42
  """
43
+ Generates a video using the model based on the provided text prompt.
 
44
  """
45
  if model_weights is None:
46
  return "Model failed to load. Please check the logs."
47
 
48
+ # Placeholder - actual inference logic should be implemented here
49
+ # Example of using the model to generate an image from a prompt
50
+ # For now, we'll create a random color image as a placeholder.
51
+
52
+ # Assuming the model generates an image based on the prompt (modify with actual logic)
53
  width, height = 512, 512
54
  img = Image.new("RGB", (width, height),
55
  color=(random.randint(0, 255),
 
60
  transform = transforms.ToTensor()
61
  frame = (transform(img).permute(1, 2, 0).numpy() * 255).astype(np.uint8)
62
 
63
+ # Create a fake video with repeated frames (replace with actual frame generation)
64
+ frames = [frame] * 16 # 16 repeated frames (replace with actual video frames from the model)
65
  output_path = "output.mp4"
66
 
67
  # Save frames as a video with 8 fps
 
69
 
70
  return output_path
71
 
 
72
  # Gradio UI
73
  iface = gr.Interface(
74
  fn=generate_video,