Wan2.1 / generate.py
rahul7star's picture
Update generate.py
5433ca6 verified
raw
history blame
7.95 kB
import logging
import os
import torch
import torch.distributed as dist
from PIL import Image
from datetime import datetime
from tqdm import tqdm
def generate(args):
rank = int(os.getenv("RANK", 0))
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
# Set device: use CPU if specified, else use GPU based on rank
if args.t5_cpu or args.dit_fsdp: # Use CPU if specified in arguments
device = torch.device("cpu")
logging.info("Using CPU for model inference.")
else:
device = local_rank
torch.cuda.set_device(local_rank) # Ensure proper device assignment if using GPU
logging.info(f"Using GPU: {device}")
_init_logging(rank)
# Distributed setup
if world_size > 1:
dist.init_process_group(
backend="nccl",
init_method="env://",
rank=rank,
world_size=world_size)
else:
assert not (
args.t5_fsdp or args.dit_fsdp
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
if args.ulysses_size > 1 or args.ring_size > 1:
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
from xfuser.core.distributed import (initialize_model_parallel,
init_distributed_environment)
init_distributed_environment(
rank=dist.get_rank(), world_size=dist.get_world_size())
initialize_model_parallel(
sequence_parallel_degree=dist.get_world_size(),
ring_degree=args.ring_size,
ulysses_degree=args.ulysses_size,
)
# Handle prompt extension if needed
if args.use_prompt_extend:
if args.prompt_extend_method == "dashscope":
prompt_expander = DashScopePromptExpander(
model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
elif args.prompt_extend_method == "local_qwen":
prompt_expander = QwenPromptExpander(
model_name=args.prompt_extend_model,
is_vl="i2v" in args.task,
device=rank)
else:
raise NotImplementedError(f"Unsupported prompt_extend_method: {args.prompt_extend_method}")
cfg = WAN_CONFIGS[args.task]
print(f"Generation job args: {args}")
print(f"Generation model config: {cfg}")
# Broadcast base seed across distributed workers
if dist.is_initialized():
base_seed = [args.base_seed] if rank == 0 else [None]
dist.broadcast_object_list(base_seed, src=0)
args.base_seed = base_seed[0]
# Set prompt and task details
if "t2v" in args.task or "t2i" in args.task:
print("tect to x ")
if args.prompt is None:
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
print(f"Input prompt: {args.prompt}")
if args.use_prompt_extend:
logging.info("Extending prompt ...")
if rank == 0:
prompt_output = prompt_expander(
args.prompt,
tar_lang=args.prompt_extend_target_lang,
seed=args.base_seed)
if prompt_output.status == False:
logging.info(f"Prompt extension failed: {prompt_output.message}")
input_prompt = args.prompt
else:
input_prompt = prompt_output.prompt
else:
input_prompt = [None]
if dist.is_initialized():
dist.broadcast_object_list(input_prompt, src=0)
args.prompt = input_prompt[0]
logging.info(f"Extended prompt: {args.prompt}")
logging.info("Creating WanT2V pipeline.")
wan_t2v = wan.WanT2V(
config=cfg,
checkpoint_dir=args.ckpt_dir,
device_id=device,
rank=rank,
t5_fsdp=args.t5_fsdp,
dit_fsdp=args.dit_fsdp,
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
t5_cpu=args.t5_cpu,
)
logging.info(f"Generating {'image' if 't2i' in args.task else 'video'} ...")
try:
video = wan_t2v.generate(
args.prompt,
size=SIZE_CONFIGS[args.size],
frame_num=1,
shift=args.sample_shift,
sample_solver=args.sample_solver,
sampling_steps=args.sample_steps,
guide_scale=args.sample_guide_scale,
seed=args.base_seed,
offload_model=args.offload_model)
except Exception as e:
logging.error(f"Error during video generation: {e}")
raise
else: # image-to-video
if args.prompt is None:
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
if args.image is None:
args.image = EXAMPLE_PROMPT[args.task]["image"]
logging.info(f"Input prompt: {args.prompt}")
logging.info(f"Input image: {args.image}")
img = Image.open(args.image).convert("RGB")
if args.use_prompt_extend:
logging.info("Extending prompt ...")
if rank == 0:
prompt_output = prompt_expander(
args.prompt,
tar_lang=args.prompt_extend_target_lang,
image=img,
seed=args.base_seed)
if prompt_output.status == False:
logging.info(f"Prompt extension failed: {prompt_output.message}")
input_prompt = args.prompt
else:
input_prompt = prompt_output.prompt
else:
input_prompt = [None]
if dist.is_initialized():
dist.broadcast_object_list(input_prompt, src=0)
args.prompt = input_prompt[0]
logging.info(f"Extended prompt: {args.prompt}")
logging.info("Creating WanI2V pipeline.")
wan_i2v = wan.WanI2V(
config=cfg,
checkpoint_dir=args.ckpt_dir,
device_id=device,
rank=rank,
t5_fsdp=args.t5_fsdp,
dit_fsdp=args.dit_fsdp,
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
t5_cpu=args.t5_cpu,
)
logging.info("Generating video ...")
try:
video = wan_i2v.generate(
args.prompt,
img,
max_area=MAX_AREA_CONFIGS[args.size],
frame_num=1,
shift=args.sample_shift,
sample_solver=args.sample_solver,
sampling_steps=args.sample_steps,
guide_scale=args.sample_guide_scale,
seed=args.base_seed,
offload_model=args.offload_model)
except Exception as e:
logging.error(f"Error during video generation: {e}")
raise
# Save the output video or image
if rank == 0:
if args.save_file is None:
formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
formatted_prompt = args.prompt.replace(" ", "_").replace("/", "_")[:50]
suffix = '.png' if "t2i" in args.task else '.mp4'
args.save_file = f"{args.task}_{args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}" + suffix
try:
if "t2i" in args.task:
logging.info(f"Saving generated image to {args.save_file}")
cache_image(tensor=video.squeeze(1)[None], save_file=args.save_file, nrow=1, normalize=True)
else:
logging.info(f"Saving generated video to {args.save_file}")
cache_video(tensor=video, save_file=args.save_file)
except Exception as e:
logging.error(f"Error saving output: {e}")
raise